Published
Edited
May 4, 2022
21 forks
Importers
12 stars
Also listed in…
Curated Datasets
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
db
select *
from sales
-- lets grab 1 day worth of data (the entire dataset is a month's worth
WHERE utc_timestamp > TIMESTAMP '2020-09-10'
AND utc_timestamp < TIMESTAMP '2020-09-11'
-- lets limit to purchases made in US Dollars to simplify exchange rates
AND currency = 'USD'
Insert cell
// the results are stored in the variable:
oneday
Insert cell
Insert cell
db = DuckDBClient.of({
sales: FileAttachment("1000000-bandcamp-sales@1.parquet") ,
})
Insert cell
Insert cell
Insert cell
db.describe("sales")
Insert cell
Insert cell
db
select count(*)::INT as count
from sales;
Insert cell
Insert cell
db
select * from sales
limit 1000;
Insert cell
// when we save the result of a query in a named SQL Cell we can access it via JavaScript
sample[0]
Insert cell
Plot.plot({
marks: [
Plot.barX(sample, Plot.groupY({x: "count"}, {y: "artist_name", sort: {y: "x", reverse: true, limit: 10}}))
],
marginLeft: 200
})
Insert cell
Insert cell
getArtUrl = u => `https://f4.bcbits.com/img/${u}`
Insert cell
getItemUrl = (u) => `https://${u.account}.bandcamp.com` + (u.type ? `/${u.type}` : "") + (u.slug ? `/${u.slug}` : "")
Insert cell
Insert cell
db
select * from sales
where currency = 'USD'
order by amount_paid desc
limit 100
Insert cell
Insert cell
topdollarUrls = topdollar.map(d => {
return {
...d,
url: getItemUrl(d),
art_url: getArtUrl(d.art_url)
}
})
Insert cell
Insert cell
Inputs.table(topdollarUrls, {
columns: ["artist_name", "item_description", "amount_paid", "currency", "url"],
format: { url: r => html`<a href="${r}">${r}</a>` },
width: { amount_paid: "60px", currency: "40px", artist_name: "200px" },
})
Insert cell
Insert cell
Plot.plot({
marks: [
Plot.ruleY([0]),
Plot.image(topdollarUrls, {
x: "utc_timestamp",
y: "amount_paid",
src: "art_url"
})
],
insetTop: 10,
insetLeft: 10,
})
Insert cell
Insert cell
Insert cell
db
select type, physical, count(*)::INT as count
from sales
group by type, physical
Insert cell
Insert cell
Plot.plot({
marks: [
Plot.barY(bytype, {x: "type", y: "count", fill: "physical"})
],
color: { legend: true, tickFormat: d => d ? "physical" : "digital" },
marginLeft: 60
})
Insert cell
Insert cell
db
select currency, count(*)::INT as count, sum(item_price)::INT as prices, sum(amount_paid)::INT as revenue
from sales

group by currency
order by count desc
Insert cell
Plot.plot({
marks: [
Plot.barX(bycurrency, {x: "count", y: "currency", sort: { "y": "x", reverse: true }})
]
})
Insert cell
Insert cell
exchangeRates = d3.json("https://open.er-api.com/v6/latest/USD")
Insert cell
bycurrencyUSD = bycurrency.map(d => {
return {
...d,
prices_usd: Math.round(d.prices / exchangeRates.rates[d.currency]),
revenue_usd: Math.round(d.revenue / exchangeRates.rates[d.currency]),
}
})
Insert cell
Inputs.table(bycurrencyUSD)
Insert cell
Now we can plot monetary values
Insert cell
Plot.plot({
marks: [
Plot.barX(bycurrencyUSD, {x: "revenue_usd", y: "currency", fillOpacity: 0.55, fill: "green", sort: { "y": "x", reverse: true }}),
Plot.barX(bycurrencyUSD, {x: "prices_usd", y: "currency", fillOpacity: 0.55, fill: "steelblue", sort: { "y": "x", reverse: true }}),
]
})
Insert cell
Insert cell
process = (data) => {
return data.map(d => {
return {
...d,
price_usd: d.item_price/exchangeRates.rates[d.currency], // item_price in USD
paid_usd: d.amount_paid/exchangeRates.rates[d.currency], // amount_paid in USD
url: getItemUrl(d), // full url to item
art_url: getArtUrl(d.art_url) // full url to artwork
}
})
}
Insert cell
processed = process(sample)
Insert cell
Inputs.table(processed)
Insert cell
Plot.plot({
caption: "histogram of how much people paid",
marks: [
Plot.rectY(processed, Plot.binX({y: "sum"}, {x: "paid_usd"}))
],
})
Insert cell
Plot.plot({
caption: "histogram of how much people paid",
facet: {
data: processed,
x: "type_label"
},
marks: [
Plot.frame(),
Plot.rectY(processed, Plot.binX({y: "sum"}, {x: "paid_usd"}))
],
grid: true,
inset: 5,
width: width
})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more