Published
Edited
Jun 21, 2018
8 forks
110 stars
WebGPU ShaderHydraulic Erosion SimulationHow Does Mapbox Raster Colorization Work?Arc Length of a Quadratic Bézier SplineMagnetic PendulumTracing Lamb Modes in the Complex PlaneMissing Fundamental IllusionSliced Optimal TransportLine Integral ConvolutionShanks TransformationUeda's AttractorCubic basis vs. Hermite interpolationBicubic Texture Interpolation using Linear FilteringFactor-of-Two Lanczos Image ResamplingAperiodic Monotileeqn [WIP]SDF Points with reglKnocking Down the Gates with our Friend JacobiFast Generalized Winding Numbers in 2DHTML+CSS Periodic Three-Body OrbitsClifford and de Jong AttractorsStrange Attractors on the GPU, Part 1: ImplementationStrange Attractors on the GPU, Part 2: Fun!Lawson's Klein BottleInteractive Multi-scale Turing PatternsComputing π with the Bailey-Borwein-Plouffe FormulaThe Double Pendulum MapMalkus WaterwheelRegister Allocation and the k-Coloring ProblemMultiscale Turing Patterns in WebGLSelecting the Right Opacity for 2D Point CloudsKuramoto-Sivashinsky Equation in 2DAdaptive Contouring in Fragment ShadersComplex function plotterGPU Voronoi Diagrams using the Jump Flooding AlgorithmBaker's MapHello, g9Dispersion in Water Surface WavesFake Transparency for 3D SurfacesUniformly Distributed Points on a SphereGPU BoidsGrouping Points with Principal Component Analysis
Domain Coloring for Complex Functions
Drawing indexed mesh data as screen-space normals without duplicating dataFinding Roots in the Complex PlanePeriodic Planar Three-Body Orbits2D (Non-physical) N-body Gravity with Poisson's EquationHalf-Precision Floating-Point, VisualizedIntegers in Single-Precision Floating-PointDomain Coloring with Adaptive ContouringInstanced WebGL CirclesDouble Compound Pendulums3D Reaction-DiffusionMathematical Easter Egg ColoringToiletpaperfullerenes and Charmin Nanotubes
Also listed in…
WebGL
WebGL
Insert cell
Insert cell
Insert cell
Insert cell
drawPlot3(domainColoringParameters)
Insert cell
drawPlot3 = plot3.createDrawFunction(`vec2 f (vec2 z) {
return cdiv(cmul(csqr(z) - vec2(1, 0), csqr(z - vec2(2, 1))), csqr(z) + vec2(2, 2));
}`)
Insert cell
Insert cell
Insert cell
drawPlot1 = plot1.createDrawFunction(`
vec2 f (vec2 z) {
return z;
}
`)
Insert cell
drawPlot1(domainColoringParameters)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
drawPlot2 = plot2.createDrawFunction(`
uniform float n;
vec2 f (vec2 z) {
return cpow(z, n);
}
`)
Insert cell
drawPlot2(Object.assign({n}, domainColoringParameters))
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
drawPlot4 = plot4.createDrawFunction(`
uniform float t;
vec2 f (vec2 z) {
vec2 fz = C_ONE;
vec2 a0 = cexp(vec2(0.375, -0.125 * t));
fz = cmul(fz, z - cexp(vec2(0.0, t)));
fz = cdiv(fz, z - cexp(vec2(0.5, 0.5 * t)));
fz = cmul(fz, z - cexp(vec2(0.125, -0.625 * t)));
fz = cdiv(fz, z - cexp(vec2(0.25, -0.25 * t)));
fz = cmul(fz, csqr(z - a0));
return fz;
}
`)
Insert cell
drawPlot4(Object.assign({t: 6}, domainColoringParameters))
Insert cell
!paused && drawPlot4(Object.assign({t: (now / 1000) % 1000}, domainColoringParameters))
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
drawPlot5 = plot5.createDrawFunction(`
vec2 f (vec2 z) {
z /= 16.0;
return csin(cinv(z));
}
`)
Insert cell
drawPlot5(domainColoringParameters)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more