Published
Edited
Feb 25, 2021
Importers
15 stars
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
lissajous = (t, a, b, δ) =>
t.map(t => [Math.sin(a * t + δ), Math.cos(b * t), 0])
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
{
// The WebGL and regl context is defined below so that we don't recreate it every
// time we execute this cell.
const { canvas, regl, camera } = plot1;

// We do recreate the draw command every time, but this doesn't seem to cause problems.
const drawLines = createDrawLineCommand(regl);

camera(() => {
drawLines({
// We pass a list of [[x0, y0, z0], [x1, y1, z1], ...]
position: lissajous(t, a, b, δ)
});
});

return canvas;
}
Insert cell
Insert cell
{
const { canvas, regl, camera } = plot2;
const drawBorderedLines = createDrawBorderedLineCommand(regl);

camera(() => {
drawBorderedLines({
position: lissajous(t, a, b, δ),
borderColor: { constant: [0.4, 0.8, 1, 1] }
});
});

return canvas;
}
Insert cell
Insert cell
Insert cell
{
const { canvas, regl, camera } = plot3;
const drawBorderedLines = createDrawBorderedLineCommand(regl);

// Construct a buffer *once*
const buffer = regl.buffer(lissajous(t, a, b, δ));

function draw() {
// Needed for regl to maintain its state with our custom timing loop
regl.poll();

camera(({ time }) => {
// Update the buffer data in-place. This is much faster and less
// disruptive than passing array data to the draw command or manually
// creating a new buffer for each frame.
buffer.subdata(lissajous(t, a, b, time));

drawBorderedLines({
// buffer doesn't expose the number of items, so we need to specify
// the number of vertices
count: t.length,
position: buffer
});
});

return canvas;
}

if (play) {
while (true) yield draw();
} else {
yield draw();
}
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
{
const { canvas, regl, camera } = plot4;
const drawBorderedLines = createDrawBorderedLineCommand(regl);

camera(() => {
drawBorderedLines({
position: lissajous(t, a, b, δ),
width: { constant: lineWidth },
color: { constant: hexToFloatRgba(lineColor) },
borderWidth: { constant: borderWidth },
borderColor: { constant: hexToFloatRgba(borderColor) },
maxExpectedTurningAngle
});
});

return canvas;
}
Insert cell
Insert cell
{
const { canvas, regl, camera } = plot5;
const drawBorderedLines = createDrawBorderedLineCommand(regl);

const spectrum = t => [
0.5 + 0.5 * Math.cos(t),
0.5 + 0.5 * Math.cos(t - (2 / 3) * Math.PI),
0.5 + 0.5 * Math.cos(t - (4 / 3) * Math.PI),
1
];

const wavyGrayscale = t => [
0.5 + 0.5 * Math.cos(t * 10),
0.5 + 0.5 * Math.cos(t * 10),
0.5 + 0.5 * Math.cos(t * 10),
1
];

camera(() => {
drawBorderedLines({
position: lissajous(t, a, b, δ),
width: t.map(t => 5 + 3 * Math.cos(t)),
color: t.map(spectrum),
borderWidth: t.map(t => 5 + 3 * Math.cos(t)),
borderColor: t.map(wavyGrayscale),
maxExpectedTurningAngle
});
});

return canvas;
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more