Public
Edited
Mar 8, 2021
Importers
39 stars
Election 2020 County Vote Distribution within a State2020 Presidential Election Time Series AnomaliesMontana 2020 Legislative Outcomes
Dot-density election maps with Webgl
Pennsylvania 2020 General Election Mail Ballot Requests AnalysisElection Night Results2020 Presidential Election Time SeriesUS Electoral College Results 1900 - 2020Facebook Advertising in the 2020 Presidential ElectionUS Presidential Election Results (1976 - 2020)2020 Presidential Election in ChicagoBlue waveElection 2020: How reliable are different results at different stages?Election 2020 Vote–Time Correlation CartogramElection 2020 Vote Count Speed CartogramWhat’s the connection between these two election bar charts?Spinning counties, November 2020A Better Way to Visualize US Elections 2020 ResultsUS Elections 2020 Results - Deeper LookUS Election 2020Indian Country Today #NativeVote2020Indian Country Today #NativeVote2020As votes are countedTry to impeach this? Challenge accepted!Early Voting Wait Times in Gwinnett County, GeorgiaVOTE LogoDonor Age Distribution of 2020 Contributions by Individuals: Trump vs. Sanders2020: Where Donation $$ EmergeUnique Individual Donors contributing to the 2020 Presidential CandidatesContributions: Trump vs. Biden 2020Changes to polling placesElectoral College Unit ShuffleAs votes come in, what would it take for the trailing candidate to win?Electoral College Decision Tree2004 - 2016 Presidential Margin of Victory per County2020 State Probabilities by Election Model - Shaded Table2020 Presidential Election ForecastsElection Maps: 2016Working With Election Data: EAVS3a. Historical participation in early voting vs. Election Day votingNC Election MapSouth Carolina Early and Absentee Voting DataRace Bar Chart utilitiesNC Congressional DistrictsGrid cartogramsPaths to the White House (Inferred)US Elections 2018How well does population density predict U.S. voting outcomes?
US Election Convention MapElection Data Tutorial2020 Presidential Election Forecasts2016 U.S. presidential election (PEPSI Remix)2016 U.S. presidential election
USPS collection box changesU.S. Geographic DataU.S. County Visualization IdeasRejected Mail Ballots in North Carolina
Also listed in…
WebGL cartography
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import {fullscreen} from "@fil/fullscreen"

Insert cell
Insert cell
Insert cell
election_districts.bytes
Insert cell
Type JavaScript, then Shift-Enter. Ctrl-space for more options. Arrow ↑/↓ to switch modes.

Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
election_districts.t.schema.fields[5].typeId
Insert cell
election_districts = new TriFeather(await FileAttachment("ne_50m_admin_0_countries_lakes.gleofeather").arrayBuffer())//TriFeather.from_feature_collection(await FileAttachment("nyc.geojson").json(), flip)
Insert cell
Insert cell
election_districts
Insert cell
function random_points(frame, fields, n_represented = 1) {
const counts_by_field = fields.map(field => d3.sum(frame.t.getColumn(field).toArray()))
frame._number_of_points = d3.sum(counts_by_field)/n_represented
const all_coords = fields.map((f, i) => new Float32Array(Math.round(counts_by_field[i]/n_represented * 2.05)))
let coord_positions = all_coords.map(() => -2);
// Overallocate a bit.

for (let ix of d3.range(frame.t.length)) {
const f = frame.t.get(ix);
if (f.coord_resolution === null) {continue}
const vert_buffer = new DataView(f.vertices.buffer, f.vertices.byteOffset, f.vertices.byteLength)
let double_areas = fields.map(k => f.pixel_area * 2)// save an op later by doubling here.
let number_neededs = fields.map(k => randround(f[k]/n_represented))
// number_needed = 3;
// The current triangle in ax,ay,bx,by,cx,cy order

let current_number = -2;
const metadata = []
const stride = f.coord_resolution / 8
const offset = f.coord_buffer_offset;
for (let i = 0; i < f.vertices.byteLength; i += stride * 3) {
let a, b, c
try {
[a, b, c] = ([0, 1, 2]).map(ix => vert_buffer[`getUint${f.coord_resolution}`](i + ix*stride, true)).map(n => frame.coord(n+ offset))
} catch {
return {f, current_number, i, byte_length: f.vertices.byteLength}
}
// Ax(By - Cy) + Bx(Cy - Ay) + Cx(Ay - By)
const area = Math.abs(
a[0] * (b[1] - c[1]) + b[0] * (c[1] - a[1]) + c[0]*(a[1] - b[1])
)//earcut seems to always return triangles in a form where the absolute
// value isn't necessary.

for (let f_num of d3.range(fields.length)) {
const share = area/double_areas[f_num]
double_areas[f_num] -= area
let how_many_points_do_i_get = randround(number_neededs[f_num] * share)
for (let i = 0; i < how_many_points_do_i_get; i++) {
// Assign no more if we're at the cap.
if ((number_neededs[f_num] -= 1) <= -1) {break}
all_coords[f_num].set(random_point(a, b, c), coord_positions[f_num] += 2)
}
}
}
}
return all_coords.map((c, i) => c.slice(0, coord_positions[i]))
}
Insert cell
Insert cell
function randround(how_many_points_do_i_get) {
const leftover = how_many_points_do_i_get % 1;
// Random round to decide if you get a fractional point.
if (Math.random() > leftover) {
how_many_points_do_i_get -= leftover
} else {
how_many_points_do_i_get += (1 - leftover)
}
return how_many_points_do_i_get
}
Insert cell
Insert cell
function random_point([ax, ay], [bx, by], [cx, cy]) {
const a = [bx - ax, by - ay]
const b = [cx - ax, cy - ay]
let [u1, u2] = [Math.random(), Math.random()]
if (u1 + u2 > 1) {u1 = 1 - u1; u2 = 1 - u2}
const w = [u1 * a[0] + u2 * b[0], u1 * a[1] + u2 * b[1]]
return [w[0] + ax, w[1] + ay]
}
Insert cell
Insert cell
Insert cell
Insert cell
balancer = () => (Math.sin(Date.now()/500) + 1)/2
Insert cell
map.color_func = function(f) {
const balance = (Math.sin(Date.now()/500) + 1)/2
const r1 = 1 - f.properties["2016_Trump"]/f.properties["2016_tot"]
const r2 = 1 - f.properties["2020_Trump"]/f.properties["2020_tot"]
if (f.properties["2020_tot"] === 0) {return [1, 1, 1]}
const {r, g, b} = d3.rgb(colorscale(r1*(1-balance) + r2*balance))
return [r/255, g/255, b/255]
}
Insert cell
colorscale = d3.scaleSequential(d3.interpolateRdBu).domain([0.05, .95])
Insert cell
map = new TriMap(div, [election_districts])
Insert cell
md`# TriMap

A handler class to deal with interactions between regl contexts and feather feature sets. I'll use this more later.`
Insert cell
md`## Sentinels

To listen for changes in the sliders without rebuilding the whole webgl context.`
Insert cell
{
sentinel
map.generate_random_points(candidates, n_represented)
}
Insert cell
{
// Separate so shifts to opacity don't regenerate points
map.point_opacity = point_opacity

}
Insert cell
class TriMap {

constructor(div, layers) {

this.div = div
this.regl = wrapRegl({canvas: div, extensions: ["OES_element_index_uint"]})
for (let layer of layers) {
layer.bind_to_regl(this.regl)
}
this.layers = layers;

const {width, height} = div
this.magic_numbers = window_transform(
d3.scaleLinear().domain(layers[0].bbox.x).range([0, width]),
d3.scaleLinear().domain(layers[0].bbox.y).range([0, height]), width, height)
.map(d => d.flat())
this.prepare_div(width, height)
this.set_renderer()
//this.regl.frame(() => this.tick())
this.random_points = []
// this.generate_random_points()
}

prepare_div(width, height) {
this.zoom = {transform: {k: 1, x: 0, y:0}}
d3.select(this.div).call(d3.zoom().extent([[0, 0], [width, height]]).on("zoom", (event, g) => {
this.zoom.transform = event.transform
}));

return div;
}

get size_func() {
return this._size_function ? this._size_function : () => 1
}

set size_func(f) {
this._size_function = f
}

set color_func(f) {
this._color_function = f
}

get color_func() {
return this._color_function ? this._color_function : () => [.8, .8, .8]

}

generate_random_points(fields, represented=1) {
const { regl } = this;
const positions = random_points(this.layers[0], fields, represented)
if (this.random_points) {
for (let point of this.random_points) {
// Housekeeping.
point.buffer.destroy()
}
}
this.random_points = positions.map(
(d, i) => { return {
count: d.length/2,
label: fields[i],
year: +fields[i].split("_")[0],
buffer: regl.buffer(d)
}
})
}

point_tick() {
const { regl } = this;
const calls = []
const b = balancer()
// multiple interleaved tranches prevent Trump or Biden from always being on top. This is
// an issue with Williams's maps, which over-represent the Hispanic population of DC because it
// gets plotted last.
const alpha_scale = d3.scaleSqrt().domain([0, 500]).range([0, 1])
const n_tranches = 8
for (let offset of d3.range(n_tranches)) {
for (let pointset of this.random_points) {
calls.push({
position: pointset.buffer,
offset: offset * 8,
stride: 8 * n_tranches,
transform: this.zoom.transform,
count: Math.floor(pointset.count/n_tranches) - 1,
color: pointset.label.match("Trump") ? [.8, .4, .2] : pointset.label.match(/Biden|Clinton/) ? [.2, .4, .8] : [.2, .8, .4],
centroid: [0, 0],
size: 1,
alpha: this.point_opacity
})
}
}
const random = d3.randomLcg(0.9051667019185816);
const shuffle = d3.shuffler(random);
shuffle(calls)
this.render_points(calls)
}

tick(wut) {
const { regl } = this
regl.clear({
color: [0, 0, 0, .01],
})
const alpha = 1
if (wut === "points") {
this.point_tick()
} else {
this.poly_tick()
}

}


poly_tick() {
const { regl } = this;
const calls = []
return
for (let feature of this.layers[0]) {
if (feature.properties['2020_tot'] === null) {continue}
const {vertices, coords} = feature;
calls.push({
transform: this.zoom.transform,
color: this.color_func(feature),
centroid: [feature.properties.centroid_x, feature.properties.centroid_y],
size: this.size_func(feature),
alpha: 1,
vertices: vertices,
coords: coords
})
}
this.render_polygons(calls)
}

get vertex_shader() {return `
precision mediump float;
attribute vec2 position;
uniform float u_size;
uniform vec2 u_centroid;
varying vec4 fragColor;
uniform float u_k;
uniform float u_time;
uniform vec3 u_color;
varying vec4 fill;

// Transform from data space to the open window.
uniform mat3 u_window_scale;
// Transform from the open window to the d3-zoom.
uniform mat3 u_zoom;
uniform mat3 u_untransform;


// We can bundle the three matrices together here for all shaders.
mat3 from_coord_to_gl = u_window_scale * u_zoom * u_untransform;


float u_scale_factor = 0.35;

void main () {

// scale to normalized device coordinates
// gl_Position is a special variable that holds the position
// of a vertex
vec2 from_center = position-u_centroid;


vec3 p = vec3(from_center * u_size + u_centroid, 1.) * from_coord_to_gl;
gl_Position = vec4(p, 1.0);

gl_PointSize = u_size * (exp(log(u_k)*u_scale_factor));

fragColor = vec4(u_color.rgb, 1.);
//gl_Position = vec4(position / vec2(1., u_aspect), 1., 1.);
}
`}

set_renderer() {
// this.render_polygons = this.regl(this.renderer())
this.render_points = this.regl(this.renderer("points"))
}

renderer(wut = "polygons") {
const { regl, magic_numbers } = this;
const definition = {
depth: {
enable: false
},
blend: {enable: true, func: {
srcRGB: 'one',
srcAlpha: 'one',
dstRGB: 'one minus src alpha',
dstAlpha: 'one minus src alpha',
}
},
vert: this.vertex_shader,
frag: `
precision highp float;
uniform float u_alpha;
varying vec4 fragColor;

void main() {
vec2 coord = gl_PointCoord;
vec2 cxy = 2.0 * coord - 1.0;
float r_sq = dot(cxy, cxy);
if (r_sq > 1.0) {discard;}

gl_FragColor = fragColor * u_alpha;
}`,
attributes: {
position: wut == "polygons" ?
(_, {coords}) => coords:
(_, {position, stride, offset}) => {return {buffer: position, offset , stride}}
},
count: regl.prop("count"),
elements: wut == "polygons" ? (_, {vertices}) => vertices : undefined,
uniforms: {
u_time: (context, _) => performance.now()/500,
u_k: function(context, props) {

return props.transform.k
},
u_centroid: propd("centroid", [0, 0]),
u_color: (_, {color}) => color ? color : [.8, .9, .2],
u_window_scale: magic_numbers[0].flat(),
u_untransform: magic_numbers[1].flat(),
u_zoom: function(context, props) {
const g = [
// This is how you build a transform matrix from d3 zoom.
[props.transform.k, 0, props.transform.x],
[0, props.transform.k, props.transform.y],
[0, 0, 1],
].flat()
return g
},
u_alpha: (_, {alpha}) => alpha ? alpha : 1,
u_size: (_, {size}) => size || 1,

},
primitive: wut == "polygons" ? "triangles" : "points"
}
if (wut === "polygons") {
delete definition['count']
}
return definition
}


}
Insert cell
function propd(string, def) {
return (_, props) => {
if (props[string] !== undefined) {return props[string]}
return def
}
}
Insert cell
wrapRegl = require("regl")
Insert cell
d3 = require("d3@v6")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more