Published
Edited
Apr 20, 2020
1 fork
Importers
13 stars
Andy's Walgreens COVID-19 Tracker TrackerBelgium Vaccination Tracker - Progress of the vaccination campaignVaccination against covid-19 in France500,000 COVID-19 DeathsCovid-19 vaccinations: BubblesTime Spiral with a COVID DemoCOVID MasksGrid Cartogram component with live COVID demos (plus a MapEditor)The US COVID SyringeCOVID-19 DKCOVID-19 World Community Mobility Report by GoogleCOVID 19Chicago COVID ZIP SparklinesThe COVID Syringeభారతదేశంలో కోవిడ్-19SVG DataGrid with many features and a live COVID Dashboard demoThe spread of Covid-19 in New MexicoHeatmap of COVID-19 Confirmed Cases by Age over Time in JapanThe CoViD-19 ReportCovid19 WorldwideMassachusetts Coronavirus Cases by TownChoropleth map about Covid19 in FranceWell ordered coronavirus heatmaps for US and the WorldCOVID-19 Racial/Ethnic Mortality AnalysisProPublica's COVID Arrow MapClustering students to slow virus spread inside schoolsCOVID-19 in the USAWho Is Wearing Masks in the U.S.Covid-19 Viz RoundupCoronavirus StatsThe Covid-19 Crisis' Impact on the Number of US Flight PassengersCOVID-19 Daily New CasesCOVID-19 CasesCOVID–19 Bubble Chart with D3 RenderCoronavirus Deaths by Race / EthnicityHow many SARS-CoV-2 tests are we running in the U.S.?COVID-19 Onset vs. ConfirmationPeaks in confirmed daily deaths due to COVID-19 so farCOVID-19 in the U.S.Recreating John Burn-Murdoch’s Coronavirus trackerTracking COVID-19 Cases in VietnamCOVID-19 in NYC by Zip Code & Income
Visualizing the Network Meta-Analysis of Covid-19 Studies
xkcd COVID-19 spread sketchCOVID-19's deaths in EuropeCovid-19 (corona virus) deaths per 1,000,000 peopleCOVID-19 Bubble map or spike map? (Twitter debate)A Timeline of Shelter-in-PlaceWhere’s that $2 trillion going?Estimating SARS-COV-2 infectionsCODAVIM - CountySARS-CoV-2 Epi CurveCOVID-19 Curves (U.S.)COVID-19 Cases by CountyCOVID-19 world growth rateA graphical experiment of exponential spreadCOVID-19 by US countyCOVID-19 Confirmed vs. New cases"Live" Logistic Coronavirus Death CounterInfografiche: COVID-19 in ItaliaCoronavirus (COVID-19) GlobeBar Chart Race, COVID-19 outbreak Worldwide to 24th March 2020US Coronavirus testing by statesUnited States Coronavirus Daily Cases Map (COVID-19)COVID-19 Numbers by State, Side by SideRecreating NYT U.S. Cases MapCOVID-19 in Washington stateCOVID-19 outbreak in maps and chartsCOVID-19 Spreading trendsRestaurants during COVID-19 social distancingCOVID-19 Countries Trajectories in 3DStates that aren't reporting aspects of their COVID-19 testing processNextstrain Prototyping - Issue 817Reviewing COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxivCoronavirus worldwide evolutionCovid-19 New Cases PunchcardCovid-19 cases per district in Germany.COVID-19 Cases, Deaths, and Recoveries (Select Country)Quarantine NowEmissions in WuhanCOVID-19(nCOV-2019) Outbreak in S.KoreaMovement of population between provinces in 2019-nCoVComparing COVID-19 GrowthCovid-19 derived chartCoronavirus Trends (COVID-19)Netherlands Coronavirus Daily Cases Map (COVID-19)Map and timeline of Corona outbreakSARS-CoV-2 Phylogenetic TreeCoronavirus data (covid-19)Visualizing the Logic of Exponential Viral SpreadItaly Coronavirus Daily Cases Map (COVID-19)COVID-19 Fatality Rate
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
//chart_treatment_by_severity_prevention = generate_research_evolution_treatment_type(
// "Research evolution for treatment types : prevention",
// d => d["Study aim"] === "Prevention"
//)
Insert cell
Insert cell
Insert cell
// No more relevant as
//chart_treatment_by_severity_post = generate_research_evolution_treatment_type(
// "Research evolution for treatment types : post treatment",
// d => d["Study aim"] === "Post treatment"
//)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
data_agg_authors = d3.nest().key(function(d) { return d["First author"]; }).rollup(function(values) { return values.length }).entries(data_agg.map(d => d.value))
Insert cell
Insert cell
data_agg
Insert cell
data_agg_treatment1 = get_data_agg_field("Treatment type")
Insert cell
Insert cell
data_agg_treatment1
Insert cell
Insert cell
data_agg.map(d => d.value.values)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
import {vl} from '@vega/vega-lite-api'
Insert cell
data
Insert cell
data_agg
Insert cell
data_agg.map(function(d, i) { return d.value.values.map(e => e["Treatment type"]) })
Insert cell
html`<img src="https://covid-nma.com/wp-content/uploads/2020/04/network-mild-070420-800x450.jpg" width=500>
<br>
`
Insert cell
html`<img src="https://covid-nma.com/wp-content/uploads/2020/04/network-severe-070420-800x450.jpg" width=500>
<br>
`
Insert cell
html`<img src="https://covid-nma.com/wp-content/uploads/2020/04/network-heterogeneous-070420-800x450.jpg" width=600>
<br>
`
Insert cell
html`<img src="https://covid-nma.com/wp-content/uploads/2020/04/Network-europe-070420-800x450.jpg" width=600>
<br>`
Insert cell
html`<img src="https://covid-nma.com/wp-content/uploads/2020/04/Rplot-treatment-type-eu_page-0001-800x566.jpg" width=600>
<br>
`
Insert cell
d3 = require("d3@5")
Insert cell
vegalite = require("@observablehq/vega-lite@0.2")
Insert cell
data = d3.csvParse(await FileAttachment("Database 080420_140420.csv").text())
Insert cell
data_agg = d3.nest().key(function(d) { return d["Trial ID"]; }).rollup(function(values) {
return {values: values,
"Recruitment status": values[0]["Recruitment status"],
"Countries": values[0]["Countries"],
"Center": values[0]["Center"],
"First author": values[0]["First author"],
"Publication date online": values[0]["Publication date online"],
"Trial registration number": values[0]["Trial registration number"],
"Funding": values[0]["Funding"],
"Severity": values[0]["Severity scale"],
"Study design": values[0]["Study design"],
"registration_code": values[0]["Trial registration number"].slice(0, 3)
}
}).entries(data);
Insert cell
Treatment_type1 = new Set(data.map(d => d["Treatment type"]))
Insert cell
Treatment_type1_list = Array.from(Treatment_type1)
Insert cell
Array.from(Treatment_type1).map(d => 0)
Insert cell
Insert cell
md`Using [UpSets](https://observablehq.com/@sgratzl/upset-observable-example?collection=@sgratzl/upset-visualization-technique) to visualize co-occurences`
Insert cell
all_co_binary = data_agg.map(function(d, i) {
let a = Array.from(Treatment_type1).map(d => 0)
d.value.values.forEach(function(e) {
i = Treatment_type1_list.indexOf(e["Treatment type1"])
a[i] = 1
})
return a
})
Insert cell
// EXPERIMENTAL
// Only with a dataset otherwise too many intersections
// We need to reduce the number of categories
all_co_data = data_agg.filter((d, i) => i < 30).map(function(d, i) {
let sets = []
d.value.values.forEach(function(e) {
// if(e["Treatment type1"] != "*")
sets.push(e["Treatment type1"])
})
let a = {}
a["name"] = d.value["Trial registration number"]
a["Trial registration number"] = d.value["Trial registration number"]
a["First author"] = d.value["First author"]
a["Publication date online"] = d.value["Publication date online"]
a["sets"] = sets
return a
})
Insert cell
sets = extractSets(all_co_data)
Insert cell
intersections = generateIntersections(sets).sort(
(a, b) => b.cardinality - a.cardinality
)
Insert cell
intersections
Insert cell
viewof selection = UpSet(sets, intersections)
Insert cell
printTable(selection ? selection.elems.map(d => d): "")
Insert cell
selection
Insert cell
bycontinent = new Map(d3.nest().key(d => d).rollup(v => v.length).entries(Array.from(countriesIndex).map(d => Array.from(new Set(d[1].map(d => continents.get(d))))).flat()).map(d => [d.key, d.value]))
Insert cell
Insert cell
Insert cell
import {
checkbox,
slider,
button,
text,
select,
autoSelect,
radio
} from "@jashkenas/inputs"
Insert cell
import {printTable} from '@uwdata/data-utilities'
Insert cell
// https://observablehq.com/d/3c709ffbafcdb388
import {
map,
viewof textFilter,
viewof recruitmentFilter,
viewof zoomType,
countriesIndex,
continents
} from "3c709ffbafcdb388"
Insert cell
md`Other Viz

https://observablehq.com/d/8215857ffae42ded

`
Insert cell
stackedBar = vl.markBar()
.data(data_agg.map(d => d.value))
.encode(
vl.x().fieldO("Countries"),//.timeUnit("utcmonth"),
vl.y().count(), // .stack("normalize").axis({ format: "%" }),
vl.color().fieldN("continent") // .scale({ range: weatherColors })
)
.render()
Insert cell
// Without Date filter
chart_date_strip = embed({
data: {values: data},
mark: "tick",
width: width/2,
encoding: {
x: {field: "Registration date", type: "temporal"}
}
})
Insert cell
embed = require("vega-embed@6")
Insert cell
vegalite({
data: {values: data.filter(d => (new Date(d["Registration date"]) > new Date("2019")) )},
mark: "area",
width: width/2,
encoding: {
y: {aggregate: "count", field: "Treatment type1", type: "quantitative"},
x: {field: "Registration date", type: "temporal"},
color: {field: "Treatment type", "type":"nominal", "scale":{"scheme": "category20b"}}
},
})
Insert cell
md`OLD CHARTS`
Insert cell
html`<img src="https://covid-nma.com/wp-content/uploads/2020/04/Rplot-countries_page-0001-800x566.jpg" width=200>`
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more