Notebooks 2.0 is here.

Published
Edited
Nov 23, 2021
33 stars
Least Squares Curve Fit with the QR DecompositionLine-Sweep Ambient Occlusion with WebGPUSpring TrainingLine Sweep Ambient Occlusion in JavaScriptLine Sweep Terrain LightingSpeed Climbing World Record ProgressionWebGPU ShaderHydraulic Erosion SimulationHow Does Mapbox Raster Colorization Work?Arc Length of a Quadratic Bézier SplineMagnetic PendulumTracing Lamb Wave Modes in the Complex PlaneMissing Fundamental IllusionSliced Optimal TransportLine Integral ConvolutionShanks TransformationUeda's AttractorCubic basis vs. Hermite interpolationBicubic Texture Interpolation using Linear FilteringFactor-of-Two Lanczos Image ResamplingRendering the Aperiodic Monotileeqn [WIP]SDF Points with reglKnocking Down the Gates with our Friend JacobiFast Generalized Winding Numbers in 2DHTML+CSS Periodic Three-Body OrbitsClifford and de Jong AttractorsStrange Attractors on the GPU, Part 1: ImplementationStrange Attractors on the GPU, Part 2: Fun!Lawson's Klein BottleInteractive Multi-scale Turing PatternsComputing π with the Bailey-Borwein-Plouffe FormulaThe Double Pendulum MapMalkus WaterwheelRegister Allocation and the k-Coloring ProblemMultiscale Turing Patterns in WebGLSelecting the Right Opacity for 2D Point CloudsKuramoto-Sivashinsky Equation in 2DAdaptive Contouring in Fragment ShadersComplex function plotter
GPU Voronoi Diagrams using the Jump Flooding Algorithm
Baker's MapHello, g9Dispersion in Water Surface WavesFake Transparency for 3D SurfacesUniformly Distributed Points on a SphereGPU BoidsGrouping Points with Principal Component AnalysisDomain Coloring for Complex FunctionsDrawing indexed mesh data as screen-space normals without duplicating dataFinding Roots in the Complex PlanePeriodic Planar Three-Body Orbits2D (Non-physical) N-body Gravity with Poisson's EquationHalf-Precision Floating-Point, VisualizedIntegers in Single-Precision Floating-PointDomain Coloring with Adaptive ContouringInstanced WebGL CirclesDouble Compound Pendulums3D Reaction-DiffusionMathematical Easter Egg ColoringToiletpaperfullerenes and Charmin Nanotubes
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
fbos = [0, 1].map(() => regl.framebuffer({ colorType }))
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
jfaPass = regl({
frag: `
precision highp float;
uniform sampler2D src;
uniform float stepSize;
uniform vec2 resolution;
${unpackPosition}
${jumpFloodingGLSL}
void main() {
gl_FragColor = jumpFloodingStep(gl_FragCoord.xy, resolution, stepSize);
}`,
framebuffer: regl.prop('fbos[1]'),
uniforms: {
stepSize: regl.prop('stepSize'),
src: regl.prop('fbos[0]')
}
})
Insert cell
Insert cell
drawToScreen = regl({
frag: `
precision highp float;
#extension GL_OES_standard_derivatives : enable
uniform sampler2D src;
uniform float pixelRatio, maxRadius;
uniform vec2 resolution, activePoint;

// Draw contour screen-width grid lines of the distance field
float gridFactor (float parameter, float width, float feather) {
float w1 = width - feather * 0.5;
float d = length(vec2(dFdx(parameter), dFdy(parameter)));
float looped = 0.5 - abs(mod(parameter, 1.0) - 0.5);
return smoothstep(d * (w1 + feather), d * w1, looped);
}

${unpackColor}
${unpackPosition}

void main () {

vec4 packedPositionAndColor = texture2D(src, gl_FragCoord.xy / resolution);
vec3 color = unpackColor(packedPositionAndColor);
vec2 position = unpackPosition(packedPositionAndColor);
float dist = distance(position, gl_FragCoord.xy);
float grid = 0.03 * gridFactor(log2(dist), 0.5 * pixelRatio, 1.0);
//grid += 0.05 * gridFactor(log2(dist) * 8.0, 0.5 * pixelRatio, 1.0);
vec3 baseColor = unpackColor(packedPositionAndColor);
// highlight if it matches the point hovered over
vec4 activeValue = texture2D(src, vec2(0, 1) + vec2(1, -1) * activePoint / resolution);
vec2 activePosition = unpackPosition(activeValue);
vec3 activeColor = unpackColor(activeValue);
if (activePoint.x >= 0.0 && activePosition != vec2(0) && distance(activeColor, baseColor) < 1e-4) {
baseColor = vec3(1, 0.4, 0.2);
}

// Darken by a grid
vec3 c = mix(baseColor, vec3(0), grid);

// Darken the central point
if (maxRadius > 5.0) {
c *= smoothstep(1.0, 2.0, dist / pixelRatio);
}
// Hide the outside if clipping to a circular region
c = mix(vec3(1), c, smoothstep(maxRadius, maxRadius - 1.0, dist));

// Background is white
if (position == vec2(0)) c = vec3(1);
gl_FragColor = vec4(c, 1);
}`,
uniforms: {
src: regl.prop('src'),
pixelRatio: regl.context('pixelRatio'),
maxRadius: (ctx, props) =>
props.circularCutoff ? Math.pow(2, selectedPassCount) : 100000,
activePoint: regl.prop('activePoint')
}
})
Insert cell
Insert cell
{
let drawn = false;
const frame = regl.frame(({ time }) => {
try {
if (drawn && !animate) return;
const t = animate ? time : 0;
configureMap(({ framebufferWidth, framebufferHeight }) => {
// Lazily resize only when the size has changed:
fbos.forEach(fbo => fbo.resize(framebufferWidth, framebufferHeight));

// Initialize the pattern
fbos[0].use(() => {
regl.clear({ color: [0, 0, 16, 16] });
drawPoints({ time: t });
});

// Perform ~log2(size) JFA passes
for (
let stepSize = Math.pow(2, selectedPassCount - 1);
stepSize >= 1;
stepSize /= 2
) {
jfaPass({ fbos, stepSize });
swap(fbos);
}

// Draw the result to the screen
drawToScreen({
src: fbos[0],
circularCutoff,
activePoint: mousePosition
});
drawn = true;
});
} catch (e) {
frame.cancel();
throw e;
}
});
invalidation.then(frame.cancel);
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

Purpose-built for displays of data

Observable is your go-to platform for exploring data and creating expressive data visualizations. Use reactive JavaScript notebooks for prototyping and a collaborative canvas for visual data exploration and dashboard creation.
Learn more