Published
Edited
May 21, 2020
13 stars
WebGPU ShaderHydraulic Erosion SimulationHow Does Mapbox Raster Colorization Work?Arc Length of a Quadratic Bézier SplineMagnetic PendulumTracing Lamb Modes in the Complex PlaneMissing Fundamental IllusionSliced Optimal TransportLine Integral ConvolutionShanks TransformationUeda's AttractorCubic basis vs. Hermite interpolationBicubic Texture Interpolation using Linear FilteringFactor-of-Two Lanczos Image ResamplingAperiodic Monotileeqn [WIP]SDF Points with reglKnocking Down the Gates with our Friend JacobiFast Generalized Winding Numbers in 2DHTML+CSS Periodic Three-Body OrbitsClifford and de Jong AttractorsStrange Attractors on the GPU, Part 1: ImplementationStrange Attractors on the GPU, Part 2: Fun!Lawson's Klein BottleInteractive Multi-scale Turing PatternsComputing π with the Bailey-Borwein-Plouffe FormulaThe Double Pendulum MapMalkus WaterwheelRegister Allocation and the k-Coloring ProblemMultiscale Turing Patterns in WebGLSelecting the Right Opacity for 2D Point CloudsKuramoto-Sivashinsky Equation in 2DAdaptive Contouring in Fragment ShadersComplex function plotterGPU Voronoi Diagrams using the Jump Flooding AlgorithmBaker's MapHello, g9Dispersion in Water Surface WavesFake Transparency for 3D SurfacesUniformly Distributed Points on a SphereGPU Boids
Grouping Points with Principal Component Analysis
Domain Coloring for Complex FunctionsDrawing indexed mesh data as screen-space normals without duplicating dataFinding Roots in the Complex PlanePeriodic Planar Three-Body Orbits2D (Non-physical) N-body Gravity with Poisson's EquationHalf-Precision Floating-Point, VisualizedIntegers in Single-Precision Floating-PointDomain Coloring with Adaptive ContouringInstanced WebGL CirclesDouble Compound Pendulums3D Reaction-DiffusionMathematical Easter Egg ColoringToiletpaperfullerenes and Charmin Nanotubes
Also listed in…
Math
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
axes = Eigen.ensure(invalidation, () => {
// `ensure` is a small memory management wrapper that cleans up resource
// allocated on the wasm heap (e.g. Matrixf in the return values) when
// this cell is invalidated.

// Accumulate the centroid:
let xc = 0;
let yc = 0;

// Components of cross-covariance matrix A
let A00 = 0;
let A10 = 0;
let A11 = 0;

// Iterate over points
let xi, yi;
for (let i = 0; i < n; i++) {
xi = x.get(i, 0);
yi = x.get(i, 1);

// Accumulate the centroid
xc += xi;
yc += yi;

// Sum moments
// NOTE: Don't do this! You should compute the centroid in one pass,
// then sum, e.g. (xi - xc) * (yi - yc) *relative to the centroid* in
// order to prevent catastrophic cancellation below.
A00 += xi * xi;
A10 += xi * yi;
A11 += yi * yi;
}

// Divide to get the centroid
xc /= n;
yc /= n;

// Unshift the cross-covariance by the centroid using the parallel axis theorem
// This may cause unnecessary catastrophic cancellation if the centroid is not
// right at the origin!
A00 = A00 / n - xc * xc;
A10 = A10 / n - yc * xc;
A11 = A11 / n - yc * yc;

return {
centroid: Matrixf.fromArray([xc, yc], [1, 2]),
covariance: Matrixf.fromArray([A00, A10, A10, A11], [2, 2])
};
})
Insert cell
Insert cell
eig = Eigen.ensure(invalidation, () => {
const eig = axes.covariance.selfAdjointEigenSolver(Eigen.ComputeEigenvectors);
const vals = eig.eigenvalues();
const vecs = eig.eigenvectors();

// Compute indices which sort the eigenvalues e.g. [1, 0] if they are reversed,
// and not to be confused with sorted eigenvalues themselves.
const eigOrder = argsort(Array.apply(null, vals.buffer));

// Return sorted eigenvalues and eigenvectors.
return {
vals: vals.map((i, j, val) => vals.get(eigOrder[i], j)),
vecs: vecs.map((i, j, val) => vecs.get(eigOrder[i], j))
};
})
Insert cell
Insert cell
viewof axisProjection = Eigen.ensure(invalidation, () =>
x
.sub(Matrixf.ones([n, 1]).mul(axes.centroid))
.mul(Matrixf.fromCol(eig.vecs.col(1)))
.show('(x - x_c) \\cdot v')
)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more