Published
Edited
Apr 8, 2020
2 forks
Importers
35 stars
Insert cell
Insert cell
Insert cell
Insert cell
chart = {
const svg = d3.create("svg").attr("viewBox", [0, 0, width, height]);

const color = d3
.scaleLinear()
.domain([3, 0, -1])
.range(d3.schemeRdYlBu[3]),
gradient = DOM.uid();
svg
.append("linearGradient")
.attr("id", gradient.id)
.attr("gradientUnits", "userSpaceOnUse")
.attr("x1", 0)
.attr("y1", y(color.domain()[0]))
.attr("x2", 0)
.attr("y2", y(color.domain()[2]))
.selectAll("stop")
.data(d3.range(5))
.join("stop")
.attr("offset", i => i / 4)
.attr("stop-color", i => color(3 - i));

svg
.append("path")
.attr("fill", gradient)
.attr("d", area(values));

svg.append("g").call(xAxis);
svg.append("g").call(yAxis);

if (compareWithMM)
svg
.append("path")
.attr("fill", "none")
.attr("stroke", "steelblue")
.attr("stroke-width", .5)
.attr("d", line(mm));

return svg.node();
}
Insert cell
precision = 1e-6
Insert cell
function applyKernel(points, w) {
const values = new Float64Array(points.length).fill(0),
total = new Float64Array(points.length).fill(0);
let p = 1;
for (let d = 0; p > precision; d++) {
p = w(d);
for (let i = 0; i < points.length; i++) {
if (i + d < points.length) {
values[i + d] += p * points[i];
total[i + d] += p;
}
if (d != 0 && i - d >= 0) {
values[i - d] += p * points[i];
total[i - d] += p;
}
}
}
for (let i = 0; i < values.length; i++) {
values[i] /= total[i];
}
return values;
}
Insert cell
function gaussianSmoothing(values, N) {
const r = 2 / N;
return applyKernel(values, d => Math.exp(-((r * d) ** 2)));
}
Insert cell
function movingAverage(values, N) {
let i = 0;
let sum = 0;
const means = new Float64Array(values.length).fill(NaN);
for (let n = Math.min(N - 1, values.length); i < n; ++i) {
sum += values[i];
}
for (let n = values.length; i < n; ++i) {
sum += values[i];
means[i] = sum / N;
sum -= values[i - N + 1];
}
return means;
}
Insert cell
values = gaussianSmoothing(data.map(d => d.usage), N)
Insert cell
mm = movingAverage(data.map(d => d.usage), N)
Insert cell
Insert cell
import { data } from "@mbostock/electric-usage-2019"
Insert cell
area = d3
.area()
.defined(d => !isNaN(d))
.x((d, i) => x(data[i].date))
.y0(y(0))
.y1(y)
Insert cell
line = d3
.line()
.defined(d => !isNaN(d))
.x((d, i) => x(data[i].date - (N / 2) * (3600 * 1000)))
.y(y)
Insert cell
x = d3
.scaleTime()
.domain(d3.extent(data, d => d.date))
.range([margin.left, width - margin.right])
Insert cell
y = d3
.scaleLinear()
.domain(d3.extent(mm))
.nice()
.rangeRound([height - margin.bottom, margin.top])
Insert cell
xAxis = g => g
.attr("transform", `translate(0,${height - margin.bottom})`)
.call(d3.axisBottom(x).tickSizeOuter(0))
Insert cell
yAxis = g => g
.attr("transform", `translate(${margin.left},0)`)
.call(d3.axisLeft(y))
.call(g => g.select(".domain").remove())
.call(g => g.selectAll(".tick line").clone()
.attr("x2", width)
.attr("stroke-opacity", 0.1))
Insert cell
height = 500
Insert cell
margin = ({top: 20, right: 12, bottom: 30, left: 30})
Insert cell
d3 = require("d3@5")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more