Public
Edited
Jul 13, 2022
1 fork
16 stars
Plot: A few custom time axesAccess to Family planningPlot: MarimekkoAutoplot matrixWhat do people buy on Bandcamp?Plot: colorContrast transformA Timeline of Democratic Presidential CandidatesPlot: Diverging stacked barsPlot: Horizon ChartPlot: Ridgeline PlotTwo-Tone Pseudo Color Scales with Observable Plot & Vega-LiteRecreating Östling’s regression visualizationsError barsPlot: regression
Skies Plot
Horizon graph & Barcode with PlotTemporal AliasingPlot for mathematiciansPlot Isotype dot plotCOVID-19 Netherlands Reproduction Number TutorialPlot Mountain SunsetSpine chartsGreenhouse gas emission projectionsRaincloud Plots with Observable PlotUpset Plots with Observable PlotExploring CIELChabNature variant waves graphicWhen Presidents Fade AwayThe Coronavirus landscapeOur World In Data charts visualisationThe normal modelVisualizing The New York Times’s Mini CrosswordDistributions and summary statistics - a collection of Plot examplesVariants of SARS-Cov-2 in EuropeLaid off: 6 million jobs and countingConcentration values vs. TimeTopological subsamplingPlot of plotsCyclical time scale, v2Bullet graph IIPlot: Bullet graphCyclical time scaleRoad traffic under COVID restrictions (France)K-means binningMatrix diagramELD ViewerHappy anniversary, Project Gutenberg!ROC curvePlot stargazer historyPlot HyperboloidPhone bar plotsLog-scale histogramDatabase Outage PlotBertin’s hotelIreland’s top trade partnersBump chartBubble MatrixRenko ChartGitHub BurndownPlot: Grid choroplethCandlestick Chart
Also listed in…
Plot Experiments
Plot
Insert cell
Insert cell
chart = Plot.plot({
marks: [
Plot.rect(
data,
Plot.stackX({
x: "count",
y1: 0,
y2: 1,
fill: (_, i) => i,
stroke: "white",
strokeWidth: 0.5
})
),
Plot.dot(
data,
stackDisperseX({
x: "count",
y: d3.randomUniform.source(d3.randomLcg(42))(0.02, 1 - 0.02),
fill: "white",
r: 1.5,
repeat: "positive"
})
),
Plot.text(
data,
Plot.stackX1({
x: "count",
y: 0,
rotate: -90,
textAnchor: "end",
dy: 8,
dx: 5,
text: "name",
fontWeight: "bold"
})
),
Plot.text(
data,
Plot.stackX1({
x: "count",
y: 0,
rotate: -90,
textAnchor: "end",
dy: 8,
dx: 18,
text: (d) => `${d.positive} of ${d.count}`,
fill: "#888"
})
)
],
x: { axis: null },
y: { axis: null },
marginBottom: 110,
color: { interpolate: (t) => d3.rgb(10, 225 - t * 150, 255 - t * 150) },
width
})
Insert cell
Insert cell
function stackDisperseX({ y, ...options }) {
// random within margins
const random = d3.randomUniform.source(d3.randomLcg(41))(0.1, 1 - 0.1);

// extend options: add stackX and a lazy channel
// note: we pass y directly (Plot.stackX would otherwise consume it)
const [x, setX] = Plot.column("x");
options = { ...Plot.stackX(options), x, y };

// compose the options with a transform
return Plot.transform(options, function (data, facets) {
// call the initial transform (including stackX) and retrieve the stacks’ start (X1) and end (X2)
options.transform(data, facets);
const X1 = options.x1.transform();
const X2 = options.x2.transform();

// extract the repeat numbers for each data point
const N = Plot.valueof(data, options.repeat);
// create a new data structure indicating the new length
data = { length: d3.sum(N) };
// instantiate the lazy channel to an array with the new data length
const X = new Float32Array(data.length);
setX(X);

// loop over each facet, then over each initial data point
// and fill the channels with random positions x between X1 and X2
let k = 0;
facets = facets.map((facet) => {
const index = [];
for (const i of facet) {
const interval = d3.interpolate(X1[i], X2[i]);
for (let j = 0; j < N[i]; j++) {
X[k] = interval(random());
index.push(k);
k++;
}
}
return index;
});

return { data, facets };
});
}
Insert cell
Insert cell
Inputs.table(data)
Insert cell
// Plot plugin?
// Plot = addDisperseX(Plot_)
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more