Public
Edited
Feb 18
Importers
11 stars
WebGPU ShaderHydraulic Erosion SimulationHow Does Mapbox Raster Colorization Work?Arc Length of a Quadratic Bézier SplineMagnetic PendulumTracing Lamb Modes in the Complex PlaneMissing Fundamental IllusionSliced Optimal TransportLine Integral ConvolutionShanks TransformationUeda's AttractorCubic basis vs. Hermite interpolationBicubic Texture Interpolation using Linear FilteringFactor-of-Two Lanczos Image ResamplingAperiodic Monotile
eqn [WIP]
SDF Points with reglKnocking Down the Gates with our Friend JacobiFast Generalized Winding Numbers in 2DHTML+CSS Periodic Three-Body OrbitsClifford and de Jong AttractorsStrange Attractors on the GPU, Part 1: ImplementationStrange Attractors on the GPU, Part 2: Fun!Lawson's Klein BottleInteractive Multi-scale Turing PatternsComputing π with the Bailey-Borwein-Plouffe FormulaThe Double Pendulum MapMalkus WaterwheelRegister Allocation and the k-Coloring ProblemMultiscale Turing Patterns in WebGLSelecting the Right Opacity for 2D Point CloudsKuramoto-Sivashinsky Equation in 2DAdaptive Contouring in Fragment ShadersComplex function plotterGPU Voronoi Diagrams using the Jump Flooding AlgorithmBaker's MapHello, g9Dispersion in Water Surface WavesFake Transparency for 3D SurfacesUniformly Distributed Points on a SphereGPU BoidsGrouping Points with Principal Component AnalysisDomain Coloring for Complex FunctionsDrawing indexed mesh data as screen-space normals without duplicating dataFinding Roots in the Complex PlanePeriodic Planar Three-Body Orbits2D (Non-physical) N-body Gravity with Poisson's EquationHalf-Precision Floating-Point, VisualizedIntegers in Single-Precision Floating-PointDomain Coloring with Adaptive ContouringInstanced WebGL CirclesDouble Compound Pendulums3D Reaction-DiffusionMathematical Easter Egg ColoringToiletpaperfullerenes and Charmin Nanotubes
Insert cell
Insert cell
viewof fn = eqn`f(theta) = sin(theta)`
Insert cell
fn(0.5)
Insert cell
Insert cell
eqn`f(x) = besselj0(x) + polygamma(n, x) + gamma(pi/2)`
Insert cell
Insert cell
viewof f = eqn.block`gamma(n + 1) / factorial(n)`
Insert cell
Insert cell
f({ n: 8 })
Insert cell
Insert cell
f({})
Insert cell
Insert cell
viewof wave1 = eqn`f = sin(omega * t + phi)`
Insert cell
wave1({ omega: 2, phi: 0.5, t: 1 })
Insert cell
Insert cell
viewof wave2 = eqn`f(omega, phi, t) = sin(omega * t + phi)`
Insert cell
wave2(2, 0.5, 1)
Insert cell
Insert cell
wave2.ast
Insert cell
Insert cell
f.serialize()
Insert cell
Insert cell
viewof uv2 = eqn.block`
u = cos(theta),
v = sin(theta)`
Insert cell
uv2({ theta: 2 })
Insert cell
Insert cell
viewof uv = eqn.block`[u, v] = [cos(theta), sin(theta)]`
Insert cell
uv({ theta: 1 })
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
customEqn = eqnFactory([stdlibLibrary, jacobiElliptic])
Insert cell
viewof y = customEqn.block`
y_0 = 2 * l * sqrt(m) * sn(u, m) * dn(u, m)
y_1 = 2 * l * sqrt(m) * cn(u, m) * (2 * dn(u, m)**2 - 1)
y_2 = -2 * l * sqrt(m) * sn(u, m) * dn(u, m) * (6 * dn(u, m)**2 + 4 * m - 5)
`
Insert cell
Insert cell
Insert cell
tabulated = y.tabulate({
u: [0, special.ellipk(m) * 4],
k: Math.sqrt(m),
l: 1,
m
})
Insert cell
Plot.plot({
width: Math.min(640, width),
height: 300,
grid: true,
marks: [
Plot.ruleX([0]),
Plot.ruleY([0]),
Plot.line(tabulated, { x: "u", y: "y_0", stroke: "#c39" }),
Plot.line(tabulated, { x: "u", y: "y_1", stroke: "#9c3" }),
Plot.line(tabulated, { x: "u", y: "y_2", stroke: "#39c" })
]
})
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more