Published
Edited
Dec 14, 2021
5 forks
186 stars
WebGPU ShaderHydraulic Erosion SimulationHow Does Mapbox Raster Colorization Work?Arc Length of a Quadratic Bézier SplineMagnetic PendulumTracing Lamb Modes in the Complex PlaneMissing Fundamental IllusionSliced Optimal TransportLine Integral ConvolutionShanks TransformationUeda's AttractorCubic basis vs. Hermite interpolationBicubic Texture Interpolation using Linear FilteringFactor-of-Two Lanczos Image ResamplingAperiodic Monotileeqn [WIP]SDF Points with reglKnocking Down the Gates with our Friend JacobiFast Generalized Winding Numbers in 2DHTML+CSS Periodic Three-Body OrbitsClifford and de Jong AttractorsStrange Attractors on the GPU, Part 1: ImplementationStrange Attractors on the GPU, Part 2: Fun!Lawson's Klein BottleInteractive Multi-scale Turing PatternsComputing π with the Bailey-Borwein-Plouffe FormulaThe Double Pendulum MapMalkus WaterwheelRegister Allocation and the k-Coloring ProblemMultiscale Turing Patterns in WebGLSelecting the Right Opacity for 2D Point CloudsKuramoto-Sivashinsky Equation in 2DAdaptive Contouring in Fragment ShadersComplex function plotterGPU Voronoi Diagrams using the Jump Flooding AlgorithmBaker's MapHello, g9Dispersion in Water Surface WavesFake Transparency for 3D SurfacesUniformly Distributed Points on a Sphere
GPU Boids
Grouping Points with Principal Component AnalysisDomain Coloring for Complex FunctionsDrawing indexed mesh data as screen-space normals without duplicating dataFinding Roots in the Complex PlanePeriodic Planar Three-Body Orbits2D (Non-physical) N-body Gravity with Poisson's EquationHalf-Precision Floating-Point, VisualizedIntegers in Single-Precision Floating-PointDomain Coloring with Adaptive ContouringInstanced WebGL CirclesDouble Compound Pendulums3D Reaction-DiffusionMathematical Easter Egg ColoringToiletpaperfullerenes and Charmin Nanotubes
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
simulationLoop = {
restart;
let gif;
let width = regl._gl.canvas.width;
let height = regl._gl.canvas.height;
if (saveGIF) gif = new GIF({ width, height });
var gifTick = 0;
var gifDone = false;

let tick = 0;
let frame = regl.frame(() => {
if (!simulate || (saveGIF && gifDone)) return;
offscreenFBO.resize(width, height);

if (simulate) {
[0, 1].forEach(i => {
positionAccumulationFBO[i].use(() =>
regl.clear({ color: [0, 0, 0, 0] })
);
densityVelocityAccumulationFBO[i].use(() =>
regl.clear({ color: [0, 0, 0, 0] })
);
});
configureAccumulation({ count: n, src: stateFBO[0] }, () => {
if (regl.hasExtension("WEBGL_draw_buffers")) {
positionDensityVelocityFBO[0].use(accumulatePositionAndVelocity);
} else {
positionAccumulationFBO[0].use(accumulatePosition);
densityVelocityAccumulationFBO[0].use(accumulateDensityVelocity);
}
});

blit(() => {
if (regl.hasExtension("WEBGL_draw_buffers")) {
blur[blurStencil]([
{
src1: positionAccumulationTexture[0],
src2: densityVelocityAccumulationTexture[0],
dst: positionDensityVelocityFBO[1],
direction: [1, 0]
},
{
src1: positionAccumulationTexture[1],
src2: densityVelocityAccumulationTexture[1],
dst: positionDensityVelocityFBO[0],
direction: [0, 1]
}
]);
} else {
blur[blurStencil]([
{
src1: positionAccumulationTexture[0],
dst: positionAccumulationFBO[1],
direction: [1, 0]
},
{
src1: positionAccumulationTexture[1],
dst: positionAccumulationFBO[0],
direction: [0, 1]
}
/*{
src1: densityVelocityAccumulationTexture[0],
dst: densityVelocityAccumulationFBO[1],
direction: [1, 0]
},
{
src1: densityVelocityAccumulationTexture[1],
dst: densityVelocityAccumulationFBO[0],
direction: [0, 1]
}*/
]);
}
});

stateFBO[1].use(() => {
iterate({
randomness,
alignment,
velocityEnforcement,
separation,
cohesion,
leading,
time: (tick * 1) / 60,
src: stateFBO[0],
dt,
position: positionAccumulationTexture[0],
densityVelocity: densityVelocityAccumulationTexture[0]
});
});
swap(stateFBO);
}

offscreenFBO.use(() => {
regl.clear({ color: [0, 0, 0, 1] });
drawBoids({ src: stateFBO[0], ɑ, count: n });
});

/*regl.clear({ color: [1, 1, 1, 1] });
copy({
src: densityVelocityAccumulationTexture[0],
γ,
offset: 0.9,
scale: -0.01
});*/
copy({ src: offscreenFBO, γ, offset: 0, scale: 1 });

if (saveGIF && tick++ % gifFrameStride === 0) {
console.log("tick!", gifTick);
regl.poll();
gif.addFrame(regl._gl.canvas, { copy: true, delay: 16 });
if (gifTick++ === gifFrames) {
console.log("GIF capture complete. Beginning conversion…");
gif.render();
frame.cancel();
frame = null;
}
}
});

invalidation.then(() => {
frame && frame.cancel();
if (saveGIF) gif.abort();
});

if (saveGIF) gif.on("finished", blob => saveFile(blob, "boids.gif"));
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
iterate = {
let iterate = regl({
frag: `
precision highp float;
varying vec2 uv;
uniform vec2 inverseResolution;
uniform sampler2D src, position, densityVelocity;
uniform float dt;
uniform float turn;
uniform float uRand, uRandomness;
uniform float uCohesion, uSeparation, uAlignment, uVelocityEnforcement, uLeading;

float random(vec2 co) {
return fract(sin(dot(co.xy,vec2(12.9898,78.233))) * 43758.5453);
}

vec4 derivative (vec4 state) {
vec2 xy1 = state.xy + uLeading * dt * state.zw;

// Sample the blurred density and velocity
vec3 densityVelocitym = texture2D(densityVelocity, xy1).xzw;
xy1 = state.xy + dt * 2.0 * uLeading * densityVelocitym.yz / densityVelocitym.x;

vec4 densityVelocity0 = texture2D(densityVelocity, state.xy);
float density0 = densityVelocity0.x;
vec2 avgVelocity = densityVelocity0.zw / max(density0, 1.0);

// Sample neighboring texels to compute the density gradient
float r = 1.0;
float densityE = texture2D(densityVelocity, state.xy + vec2(inverseResolution.x, 0)).x;
float densityW = texture2D(densityVelocity, state.xy + vec2(-inverseResolution.x, 0)).x;
float densityN = texture2D(densityVelocity, state.xy + vec2(0, inverseResolution.y)).x;
float densityS = texture2D(densityVelocity, state.xy + vec2(0, -inverseResolution.y)).x;
vec2 densityGradient = vec2(densityE - densityW, densityN - densityS) / inverseResolution;

vec4 avgPositionValues = texture2D(position, xy1);
float density1 = texture2D(densityVelocity, xy1).x;

// Divide the sum of velocities by the sum of masses to compute a mass-weighted
// local average position
vec2 avgPosition = vec2(
state.x < 0.5 ? avgPositionValues.x : avgPositionValues.z,
state.y < 0.5 ? avgPositionValues.y : avgPositionValues.w
) / max(density1, 1e-8);
// The magic numbers!
float repulsion = (0.2 * 2.0) * uSeparation;
float follow = (2500.0 * 2.0) * uAlignment;
float cohesion = (850000.0 * 2.0) * uCohesion;
float velocityEnforcement = (190.0 * 2.0) * uVelocityEnforcement;
float vmag = length(state.zw);

vec2 turn = 50.0 * normalize(densityGradient.yx) * pow(density0, 1.0) * vec2(-1.0, 1.0);
vec2 randLoc = gl_FragCoord.xy + uRand * 100.0;
vec2 rand = vec2(random(randLoc), random(randLoc + 0.5)) - 0.5;

return vec4(state.zw,
-densityGradient * repulsion
+ (avgVelocity - state.zw) * follow
+ (avgPosition - state.xy) * cohesion / max(0.01, uLeading)
+ state.zw * (5.0 - vmag) * velocityEnforcement
+ 20000.0 * rand * uRandomness
//+ turn
- 1000.0 * length(state.xy - 0.5) * (state.xy - 0.5)
);
}

void main () {
vec4 yn = texture2D(src, uv);
gl_FragColor = yn + dt * derivative(yn);

float velocity = length(gl_FragColor.zw);
const float maxVelocity = 10.0;
if (velocity > maxVelocity) gl_FragColor.zw *= maxVelocity / velocity;

gl_FragColor.xy = fract(gl_FragColor.xy);//, vec2(0), vec2(1));
}`,
uniforms: {
uRandomness: regl.prop("randomness"),
uRand: () => Math.random(),
uCohesion: regl.prop("cohesion"),
uSeparation: regl.prop("separation"),
uVelocityEnforcement: regl.prop("velocityEnforcement"),
uAlignment: regl.prop("alignment"),
uLeading: regl.prop("leading"),

turn: (ctx, props) => Math.sin(props.time * 0.5) * 30.0,
inverseResolution: [1 / gridSize, 1 / gridSize],
src: regl.prop("src"),
position: regl.prop("position"),
densityVelocity: regl.prop("densityVelocity"),
dt: regl.prop("dt")
}
});
return (props) => blit(() => iterate(props));
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more