Published
Edited
Nov 15, 2020
2 stars
Election 2020 County Vote Distribution within a State2020 Presidential Election Time Series AnomaliesMontana 2020 Legislative OutcomesDot-density election maps with WebglPennsylvania 2020 General Election Mail Ballot Requests AnalysisElection Night Results2020 Presidential Election Time SeriesUS Electoral College Results 1900 - 2020Facebook Advertising in the 2020 Presidential ElectionUS Presidential Election Results (1976 - 2020)2020 Presidential Election in ChicagoBlue waveElection 2020: How reliable are different results at different stages?Election 2020 Vote–Time Correlation CartogramElection 2020 Vote Count Speed CartogramWhat’s the connection between these two election bar charts?
Spinning counties, November 2020
A Better Way to Visualize US Elections 2020 ResultsUS Elections 2020 Results - Deeper LookUS Election 2020Indian Country Today #NativeVote2020Indian Country Today #NativeVote2020As votes are countedTry to impeach this? Challenge accepted!Early Voting Wait Times in Gwinnett County, GeorgiaVOTE LogoDonor Age Distribution of 2020 Contributions by Individuals: Trump vs. Sanders2020: Where Donation $$ EmergeUnique Individual Donors contributing to the 2020 Presidential CandidatesContributions: Trump vs. Biden 2020Changes to polling placesElectoral College Unit ShuffleAs votes come in, what would it take for the trailing candidate to win?Electoral College Decision Tree2004 - 2016 Presidential Margin of Victory per County2020 State Probabilities by Election Model - Shaded Table2020 Presidential Election ForecastsElection Maps: 2016Working With Election Data: EAVS3a. Historical participation in early voting vs. Election Day votingNC Election MapSouth Carolina Early and Absentee Voting DataRace Bar Chart utilitiesNC Congressional DistrictsGrid cartogramsPaths to the White House (Inferred)US Elections 2018How well does population density predict U.S. voting outcomes?
US Election Convention MapElection Data Tutorial2020 Presidential Election Forecasts2016 U.S. presidential election (PEPSI Remix)2016 U.S. presidential election
USPS collection box changesU.S. Geographic DataU.S. County Visualization IdeasRejected Mail Ballots in North Carolina
Insert cell
Insert cell
myCanvas = DOM.canvas(975, 610)
Insert cell
viewof incidence = radio({options: ["distortion", "spin"], value: "distortion"})
Insert cell
viewof scale_by_votes = radio({title: "Scale by number of votes?", options: ["yes", "no", "by margin"], value: "no", description: "This is gonna be wrong for Alaska and Hawaii."})
Insert cell
Math.cos(0)
Insert cell
Insert cell
viewof zoom = slider({title: "zoom (square root)", min: .5, max: 15, value: 1, step: .1})
Insert cell
Insert cell
viewof speed = slider({title: "Speed of spin adjustment", min: -5, max: 5})
Insert cell
rate_of_change = d3.scaleDivergingLog().domain([.2,1, 5]).interpolator(d3.interpolatePiYG).clamp(true)
Insert cell
rate_of_change(2).split(/\(|\)/)[1].split(",").map(d => +d)
Insert cell
using.features[3].properties
Insert cell
import { data as d } from '@wattenberger2/us-election-2020'
Insert cell
votes = new Map(Object.entries(d))
Insert cell
date = "2020-07-30"
Insert cell
long_term_corona_counts.get(`53061-${date}`)
Insert cell
long_term_corona_counts
Insert cell
using.features[0].properties.CEN
Insert cell
render_loop = {
// return false
const size_scale = d3.scaleSqrt().domain([0, 10000]).range([0, 10])
const times = []
const start_time = Date.now()
while (true) {
const overall_radius = jitter_radius / 100 * (Math.sin(Date.now()/1000) + 1)/2
const start = performance.now()
gl.clear({color: [0.1, 0.1, .1,.81 ]});
for (let feature of using.features.filter(d => d.projected)) {
//Dumb
const rand = feature.rand ? feature.rand : feature.rand = [Math.random() - .5, Math.random() - .5]
const flip = rand[0] + rand[1] > 0 ? 1 : -1 // Pointless
// Gotta have a color
const { STATE, COUNTY } = feature.properties
const c_stats = long_term_corona_counts.get(`${STATE}${COUNTY}-${date}`)
const pop = pops.get(`${STATE}${COUNTY}`)
if (c_stats == undefined) {continue}
const { delta, rolling } = c_stats
const rate = rolling/pop
const val = fips_data.get(STATE+COUNTY)*10
const magnitude = val/100000;
const watt_data = votes.get(STATE+COUNTY) || {diff: 0, t: .5, b: .5, total: 0}
watt_data.margin_per_area = watt_data.diff * watt_data.total/feature.properties.CENSUSAREA;
watt_data.votes_per_area = watt_data.total/(feature.properties.CENSUSAREA + 1e-10)
const election_result = watt_data.diff
const t = Math.sin(Date.now()/(600+rand[1]*10));
if (isNaN(delta)) {continue}
let color = d3.rgb(d3.interpolateRdBu((.5 - election_result/2)))
let {r, g, b} = color;
//let color = rate_of_change(delta)
//let [r, g, b] = color.split(/\(|\)/)[1].split(",").map(d => +d)
let x_shift = overall_radius * Math.sin(Date.now()/(600+rand[1]*10) + rand[0]) * flip;
let y_shift = overall_radius * Math.cos(Date.now()/(600+rand[1]*10) + rand[1]);
x_shift = feature.centroid[0] + x_shift * .1
y_shift = feature.centroid[1] + y_shift * .1
render({
color: [r/255, g/255, b/255],
zoom,
angle: (Date.now() - start_time)/100*magnitude * Math.exp(speed) * (election_result < 0 ? -1 : 1),
scale: scale_by_votes == "yes" ? size_scale(watt_data.votes_per_area) : scale_by_votes == "by margin" ? 2 * size_scale(Math.abs(watt_data.margin_per_area)) : 1,
position: feature.coord_buffer,
elements: feature.vertex_buffer,
translate: [x_shift, y_shift],
incidence: incidence

})
}
// Logging.
times.push(performance.now() - start)
const average = d3.mean(times.slice(times.length > 200 ? times.length - 200 : 0))
yield md`Average render time of ${d3.format(".2f")(average)} milliseconds for ${n_points} points`
}
}
Insert cell
Insert cell
class BufferHandler {
// simple data structure to post blocks of data to regl buffers.
// Rather than allocate a new buffer for each polygon, which is kind of wasteful,
// just set them up in 2 MB blocks and keep using until the next call will overflow.
// Something is wrong with the regl scoping here, so it breaks if you have more than one buffer.
// Currently, I just make sure that the buffer is crazy big--would be worth fixing, though.
constructor(regl, size = 2**26) {
this.regl = regl;
this.size = size;
this.buffers = {"1": regl.buffer({length: this.size, type: "float", usage: "static"})}
this.current_buffer = "1"
this.current_position = 0;
}
post_data(data, stride = 8) {
if (data.length*4 + this.current_position > this.size) {
this.current_buffer = (1+parseInt(this.current_buffer)) + ""
this.buffers[this.current_buffer] = this.regl.buffer(this.size);
this.current_position = 0;
}
const buffer = this.buffers[this.current_buffer]
buffer.subdata(data, this.current_position)
const description = {
key: this.current_buffer,
buffer: buffer,
stride: stride ? stride : 8,
offset: this.current_position
}
this.current_position += data.length * 4;
return description;
}
}
Insert cell
using = resolution == "1:500,000" ? null : resolution == "1:5,000,000" ? m5_features : m20_features
Insert cell
Insert cell
polygon_to_triangles = function(polygon) {
// Actually perform the earcut work
const el_pos = []
const coords = polygon.flat(2)
const vertices = earcut(...Object.values(earcut.flatten(polygon)))
return { coords, vertices }
}
Insert cell
fips_data = {
const map = new Map()
const d = await d3.csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/11-10-2020.csv")
d.forEach(d => map.set(d.FIPS.padStart(5, "0"), +d.Incident_Rate))
return map
}
Insert cell
function shift_points(coords, [x, y]) {
if (coords.length) {
if (typeof(coords[0]) == "number") {
return [coords[0] - x, coords[1] - y]
} else {
return coords.map(d => shift_points(d, [x, y]))
}
}
}
Insert cell
add_triangles_to_feature = function(feature, projection, buffers) {
/*if (feature.projected) {
return
}*/
feature.projected = d3.geoProject(feature.geometry, projection)
if (!feature.projected) {
//console.log(feature.geometry)
return
}
feature.centroid = d3.geoPath().centroid(feature.projected)
feature.shifted = shift_points(feature.projected.coordinates, feature.centroid)
let coordinates;

if (feature.projected.type == "Polygon") {
coordinates = [feature.shifted]
} else if (feature.projected.type == "MultiPolygon") {
coordinates = feature.shifted
} else {throw "All elements must be polygons or multipolgyons."}
let all_coords = []
let all_vertices = []
for (let polygon of coordinates) {
const current_vertex = all_coords.length/2
const { coords, vertices } = polygon_to_triangles(polygon);
all_coords.push(...coords)
// If need to shift because we may be storing multiple triangle sets on a feature.
all_vertices.push(...vertices.map(d => d + current_vertex))
}
const coords = buffers.post_data(all_coords.flat(10), 8)
feature.coord_buffer = coords
feature.vertex_buffer = buffers.regl.elements({
primitive: "triangles",
count: all_vertices.length,
data: all_vertices.flat(10),
// Use the smallest possible int type.
type: all_coords.length < 2**8 ? 'uint8' : all_coords.length < 2**16 ? 'uint16' : 'uint32'
})
feature.vertex_buffer.data = all_vertices.flat(10)
}
Insert cell
election_results = new Map(Object.entries(data))
Insert cell
import { data } from '@kushleshkumar/a-better-way-to-visualize-us-elections-2020-results'
Insert cell
projection = d3.geoAlbersUsa().scale(2).translate([-0.2, 0])
Insert cell
buffer_handler = new BufferHandler(gl, 2**26) // I would prefer multiple at 2**20 to one giant one like this.
Insert cell
import { radio, slider } from '@jashkenas/inputs'
Insert cell
render = gl(renderer);
Insert cell
colorscheme = d3.scaleLinear().domain([0, 100]).range(d3.schemeBuGn)
Insert cell
m5_features = FileAttachment("gz_2010_us_050_00_5m.json").text().then(d => {
const geojson = JSON.parse(d)
for (let feature of geojson.features) {
add_triangles_to_feature(feature, projection, buffer_handler)
}
return geojson
})
Insert cell
m20_features = {
return FileAttachment("gz_2010_us_050_00_20m.json").text().then(d => {
const geojson = JSON.parse(d)
for (let feature of geojson.features) {
add_triangles_to_feature(feature, projection, buffer_handler)
}
return geojson
})
}
Insert cell
renderer = (
//Starting point: https://observablehq.com/@marcom13/mesh-rendering-using-webgl-regl
{
vert: `
precision mediump float;
attribute vec2 position;
uniform float aspect;
uniform float u_zoom;
uniform float u_scale;
uniform float u_incidence;
uniform float u_theta;
uniform vec3 color;
uniform vec2 translate;
varying vec3 fragColor;

mat2 rotate2d(float _angle){
return mat2(cos(_angle),-sin(_angle),
sin(_angle),cos(_angle));
}


void main () {
gl_PointSize = 2.;
vec2 rot;
fragColor = color;
if (u_incidence == 0.) {
rot=position*rotate2d(u_theta);
} else {
float angle = atan(position.x, position.y);
float magnitude = sqrt(dot(position, position));
float adjust = magnitude * (2. + sin(angle - u_theta)) / 2.;
rot = vec2(adjust * sin(angle), adjust * cos(angle));
}
gl_Position = vec4(
rot.x * u_scale * u_zoom + translate.x * u_zoom,
-rot.y * u_zoom * u_scale*aspect - translate.y*u_zoom*aspect, 0., 1.);
}
`,
frag: `
precision mediump float;
varying vec3 fragColor;
void main () {
gl_FragColor = vec4(fragColor, 1.);
}
`,
attributes: {
position: (state, props) => props.position
},
elements: function (state, props) {return props.elements},
uniforms: {
u_theta: (_, {angle}) => angle,
u_zoom: (_, {zoom}) => zoom * zoom,
u_scale: (_, {scale}) => scale,
u_incidence: (_, {incidence}) => incidence == "distortion" ? 1 : 0,
aspect: 975/610,
translate: (state, props) => props.translate,
color: (state, props) => props.color
},
primitive: "triangle",
}

)
Insert cell
topojson = require("topojson-client@3")
Insert cell
earcut = require("earcut")
Insert cell
arrow = require("apache-arrow")
Insert cell
raw_data = FileAttachment("full@2.feather").arrayBuffer()
Insert cell
feathered.get(1)
Insert cell
feathered = arrow.Table.from(raw_data)
Insert cell
table
Insert cell
table = aq.fromArrow(feathered, {unpack : true}).groupby("fips").orderby("date").derive({ rolling: aq.rolling(d => op.sum(d.cases), [-14, 0]) }).derive({"delta": d => d.rolling/op.lag(d.rolling, 14)})
Insert cell
table.groupby().sample(10).view()
Insert cell
long_term_corona_counts = {
return d3.rollup(table, r => {return {delta: r[0].delta, rolling: r[0].rolling}}, k => ("" + k.fips).padStart(5, "0") + "-" + k.date.toISOString().slice(0, 10))
}
Insert cell
import { pops } from '@codingwithfire/cmu-covidcast-api-bubbles-export'
Insert cell
i = ("" + table.column("fips").get(10))
Insert cell
table
Insert cell
import {aq, op} from '@uwdata/arquero'
Insert cell
regl = require("regl") // Use the latest Version
Insert cell
d3 = require("d3@v6", "d3-geo-projection")
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more