render_loop = {
const size_scale = d3.scaleSqrt().domain([0, 10000]).range([0, 10])
const times = []
const start_time = Date.now()
while (true) {
const overall_radius = jitter_radius / 100 * (Math.sin(Date.now()/1000) + 1)/2
const start = performance.now()
gl.clear({color: [0.1, 0.1, .1,.81 ]});
for (let feature of using.features.filter(d => d.projected)) {
const rand = feature.rand ? feature.rand : feature.rand = [Math.random() - .5, Math.random() - .5]
const flip = rand[0] + rand[1] > 0 ? 1 : -1
const { STATE, COUNTY } = feature.properties
const c_stats = long_term_corona_counts.get(`${STATE}${COUNTY}-${date}`)
const pop = pops.get(`${STATE}${COUNTY}`)
if (c_stats == undefined) {continue}
const { delta, rolling } = c_stats
const rate = rolling/pop
const val = fips_data.get(STATE+COUNTY)*10
const magnitude = val/100000;
const watt_data = votes.get(STATE+COUNTY) || {diff: 0, t: .5, b: .5, total: 0}
watt_data.margin_per_area = watt_data.diff * watt_data.total/feature.properties.CENSUSAREA;
watt_data.votes_per_area = watt_data.total/(feature.properties.CENSUSAREA + 1e-10)
const election_result = watt_data.diff
const t = Math.sin(Date.now()/(600+rand[1]*10));
if (isNaN(delta)) {continue}
let color = d3.rgb(d3.interpolateRdBu((.5 - election_result/2)))
let {r, g, b} = color;
let x_shift = overall_radius * Math.sin(Date.now()/(600+rand[1]*10) + rand[0]) * flip;
let y_shift = overall_radius * Math.cos(Date.now()/(600+rand[1]*10) + rand[1]);
x_shift = feature.centroid[0] + x_shift * .1
y_shift = feature.centroid[1] + y_shift * .1
render({
color: [r/255, g/255, b/255],
zoom,
angle: (Date.now() - start_time)/100*magnitude * Math.exp(speed) * (election_result < 0 ? -1 : 1),
scale: scale_by_votes == "yes" ? size_scale(watt_data.votes_per_area) : scale_by_votes == "by margin" ? 2 * size_scale(Math.abs(watt_data.margin_per_area)) : 1,
position: feature.coord_buffer,
elements: feature.vertex_buffer,
translate: [x_shift, y_shift],
incidence: incidence
})
}
times.push(performance.now() - start)
const average = d3.mean(times.slice(times.length > 200 ? times.length - 200 : 0))
yield md`Average render time of ${d3.format(".2f")(average)} milliseconds for ${n_points} points`
}
}