Public
Edited
Aug 1, 2023
Paused
77 forks
Importers
135 stars
Revenue by music format, 1973–2018New Zealand tourists, 1921–2018Sea ice extent, 1978–2017U.S. population by State, 1790–1990Hertzsprung–Russell diagramSpilhaus shoreline mapWalmart’s growthInequality in American citiesU.S. state choroplethWorld choroplethScatterplot matrixLine chart, multiple seriesLine chart with tooltipTreemapBar chart transitionsBand chartCancer survival ratesSlope chartDifference chartDiverging bar chartDiverging stacked bar chartScatterplotSpike mapBubble mapBox plotPSR B1919+21Normalized stacked area chartDirected chord diagramChord dependency diagramVolcano contoursRadial area chartRadial stacked bar chart, sortedRadial stacked bar chartHorizon chartSunburstStreamgraphTidy treeCluster treeRadial cluster treeBeeswarmIciclePie chartCircle packingRadial tidy treeHorizontal bar chartBubble chartStacked area chartLine chart, percent changeSankey diagramIndex chartDisjoint force-directed graphForce-directed graphHistogramBollinger bandsCandlestick chartConnected scatterplotDot plotGrouped bar chartStacked bar chart, normalizedStacked bar chart, horizontalStacked bar chartDonut chartLine chart, missing dataArea chart with missing dataArea chartChoroplethCalendarLine chartColor SchemesWord cloudd3.packEncloseNon-contiguous cartogramStar mapSolar pathSolar TerminatorWorld airports VoronoiU.S. airports VoronoiGeoTIFF contours IIVector fieldRaster & vectorClipped map tilesVector tilesRaster tilesWeb Mercator tilesTissot’s indicatrixProjection comparisonWorld map (canvas)Bivariate choroplethColor legendStyled axesGraticule labels (stereographic)Voronoi labelsPie chart componentBubble chart componentScatterplot with shapesRealtime horizon chartRidgeline plotParallel coordinatesThreshold encodingGradient encodingVariable-color lineMarey’s TrainsMarimekkoChord diagramHierarchical edge bundling IIHierarchical edge bundlingArc diagramMobile patent suitsForce-directed treeTree of LifeIndented treeCircle packing componentNested treemapCascaded treemapParallel setsNormal quantile plotQ–Q PlotHexbin mapHexbin (area)HexbinContoursDensity contoursKernel density estimationMoving averageSeamless zoomable map tilesZoomable bar chartZoomable area chartPannable chart
Brushable scatterplot matrix
Brushable scatterplotVersor draggingZoomable sunburstZoomable icicleCollapsible treeZoomable circle packingZoomable treemapHierarchical bar chartWorld tourOrthographic to equirectangularZoom to bounding boxSmooth zoomingStreamgraph transitionsStacked-to-grouped barsBar Chart RaceScatterplot tourTemporal force-directed graphAnimated treemap
Insert cell
Insert cell
Insert cell
chart = {

// Specify the chart’s dimensions.
const width = 928;
const height = width;
const padding = 28;
const columns = data.columns.filter(d => typeof data[0][d] === "number");
const size = (width - (columns.length + 1) * padding) / columns.length + padding;

// Define the horizontal scales (one for each row).
const x = columns.map(c => d3.scaleLinear()
.domain(d3.extent(data, d => d[c]))
.rangeRound([padding / 2, size - padding / 2]))

// Define the companion vertical scales (one for each column).
const y = x.map(x => x.copy().range([size - padding / 2, padding / 2]));

// Define the color scale.
const color = d3.scaleOrdinal()
.domain(data.map(d => d.species))
.range(d3.schemeCategory10);

// Define the horizontal axis (it will be applied separately for each column).
const axisx = d3.axisBottom()
.ticks(6)
.tickSize(size * columns.length);
const xAxis = g => g.selectAll("g").data(x).join("g")
.attr("transform", (d, i) => `translate(${i * size},0)`)
.each(function(d) { return d3.select(this).call(axisx.scale(d)); })
.call(g => g.select(".domain").remove())
.call(g => g.selectAll(".tick line").attr("stroke", "#ddd"));

// Define the vertical axis (it will be applied separately for each row).
const axisy = d3.axisLeft()
.ticks(6)
.tickSize(-size * columns.length);
const yAxis = g => g.selectAll("g").data(y).join("g")
.attr("transform", (d, i) => `translate(0,${i * size})`)
.each(function(d) { return d3.select(this).call(axisy.scale(d)); })
.call(g => g.select(".domain").remove())
.call(g => g.selectAll(".tick line").attr("stroke", "#ddd"));
const svg = d3.create("svg")
.attr("width", width)
.attr("height", height)
.attr("viewBox", [-padding, 0, width, height]);

svg.append("style")
.text(`circle.hidden { fill: #000; fill-opacity: 1; r: 1px; }`);

svg.append("g")
.call(xAxis);

svg.append("g")
.call(yAxis);

const cell = svg.append("g")
.selectAll("g")
.data(d3.cross(d3.range(columns.length), d3.range(columns.length)))
.join("g")
.attr("transform", ([i, j]) => `translate(${i * size},${j * size})`);

cell.append("rect")
.attr("fill", "none")
.attr("stroke", "#aaa")
.attr("x", padding / 2 + 0.5)
.attr("y", padding / 2 + 0.5)
.attr("width", size - padding)
.attr("height", size - padding);

cell.each(function([i, j]) {
d3.select(this).selectAll("circle")
.data(data.filter(d => !isNaN(d[columns[i]]) && !isNaN(d[columns[j]])))
.join("circle")
.attr("cx", d => x[i](d[columns[i]]))
.attr("cy", d => y[j](d[columns[j]]));
});

const circle = cell.selectAll("circle")
.attr("r", 3.5)
.attr("fill-opacity", 0.7)
.attr("fill", d => color(d.species));

// Ignore this line if you don't need the brushing behavior.
cell.call(brush, circle, svg, {padding, size, x, y, columns});

svg.append("g")
.style("font", "bold 10px sans-serif")
.style("pointer-events", "none")
.selectAll("text")
.data(columns)
.join("text")
.attr("transform", (d, i) => `translate(${i * size},${i * size})`)
.attr("x", padding)
.attr("y", padding)
.attr("dy", ".71em")
.text(d => d);

svg.property("value", [])
return Object.assign(svg.node(), {scales: {color}});
}
Insert cell
selection = Generators.input(chart) // or use viewof selection = chart
Insert cell
function brush(cell, circle, svg, {padding, size, x, y, columns}) {
const brush = d3.brush()
.extent([[padding / 2, padding / 2], [size - padding / 2, size - padding / 2]])
.on("start", brushstarted)
.on("brush", brushed)
.on("end", brushended);

cell.call(brush);

let brushCell;

// Clear the previously-active brush, if any.
function brushstarted() {
if (brushCell !== this) {
d3.select(brushCell).call(brush.move, null);
brushCell = this;
}
}

// Highlight the selected circles.
function brushed({selection}, [i, j]) {
let selected = [];
if (selection) {
const [[x0, y0], [x1, y1]] = selection;
circle.classed("hidden",
d => x0 > x[i](d[columns[i]])
|| x1 < x[i](d[columns[i]])
|| y0 > y[j](d[columns[j]])
|| y1 < y[j](d[columns[j]]));
selected = data.filter(
d => x0 < x[i](d[columns[i]])
&& x1 > x[i](d[columns[i]])
&& y0 < y[j](d[columns[j]])
&& y1 > y[j](d[columns[j]]));
}
svg.property("value", selected).dispatch("input");
}

// If the brush is empty, select all circles.
function brushended({selection}) {
if (selection) return;
svg.property("value", []).dispatch("input");
circle.classed("hidden", false);
}
}
Insert cell
data = FileAttachment("penguins.csv").csv({typed: true})
Insert cell
import {swatches} from "@d3/color-legend"
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more