Published
Edited
Jun 1, 2022
2 forks
Importers
74 stars
Contour Labels (canvas)Coordinated mapsgeoformatSmall circle testKruskal MazeAll the geoshapesReprojecting Vector TilesCloud ContoursHello h3-jsClipping AlbersTranslucent EarthThe truth about the Mercator projectionUsing d3-inertia with observableMercator projection of a Mercator globeD3 Vector Tiles (WIP)Finding intersections between the graticule and the clip sphere of the stereographic projection, method 2Plate tectonicsAnother hex mapEquateur & tropiquesTissot's indicatrixDistance to shoreMultiPolygon clippingSouth Africa’s medial axisSpherical intersectionVolcano Semis (points circulaires)Pencil Airocean45° mapNetCDFBlue noise sphereRubber DymaxionSpherical quasi-random (R2) distributionAutomated label placement (countries)Automated label placement (France)Automated label placement (cities)d3.geoIntersectArcDelaunay.findTriangled3-geo-voronoi and gridded dataElevation vtk.jsMapfillKrigingSpherical HeatmapReproject elevation tiles — detailReproject elevation tiles — worldFisheye Conformal MapSpherical KDE InterpolationSpherical kernel interpolation with nearest neighborsShepard’s methodModified Shepard’s methodSpherical contoursGeo Voronoi interpolationBlurry contoursHow much warmer? (BBC)H3 hexagons & geoContoursHillshading & supersamplingH3 odditiesManhattan VoronoiManhattan Voronoi IIGeoJSON feature editorColorized Manhattan Spanning Treelegra mapslegra country mapsThe complex logarithm projectionCountries small multipleThe 2D approximate Newton-Raphson methodOcean
Attitude
Count visible objectsThe Gray-Fuller spatial gridGray-Fuller grid metricsGray-Fuller grid odditiesSpherical smallest-circle problemBounding CirclesCountries Enclosing CirclesFullscreen Seamless Zoomable Map TilesMap Pan & ZoomSpherical EllipsesSynchronized projectionsThe closest countryTriangular tiling of icosahedronHello, polygon-clippingCorées / KoreasHello, procedural-glHello, placekeyZoom World ChoroplethClipping spherical polygonsSpherical phyllotaxisFour-color world map with ClingoHello, jsgeoda!The Sun’s analemmaWorld of squaresWorld of squares (spherical)A map of AfricaTagged bordersClipped geoVoronoiBlue noise sphere IISpherical Perlin NoiseSpherical Delaunay triangulationDynamic simplificationRewindPlot: Voronoi labelsAoC 12: shortest path under constraintsHello, pixi.jsFlight PathsRay out of a convex hullDistance to a segment
Also listed in…
Attitude
Maps
Insert cell
Insert cell
Insert cell
attitude = require("attitude@0.2")
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
v = attitude({ axis: [10, 50], angle: 12 }).vector() // export to vector representation
Insert cell
attitude().vector(v) // import from vector representation
Insert cell
Insert cell
Insert cell
Insert cell
attitude().inverse()
Insert cell
Insert cell
attitude().power(0.25)
Insert cell
Insert cell
// Euler angles must but composed in the correct order
attitude([0, 0, 10]).compose(attitude([0, -35, 0]).compose(attitude([40, 0, 0])))
.angles()
Insert cell
attitude([40, 0, 0])
.compose(attitude([0, -35, 0]))
.compose(attitude([0, 0, 10]))
.angles()
Insert cell
Insert cell
frac = attitude([40, 0, 0])
.compose(attitude([0, 10, 0]).inverse())
.angles()
Insert cell
Insert cell
A = [-90, 0]
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
function drag(projection) {
let p,
a = attitude();

function dragstarted({x,y}) {
a.angles(projection.rotate());
p = projection.rotate([0, 0]).invert([x, y]);
d3.select(this).style("cursor", "grabbing");
}

function dragged({x,y}) {
const q = projection.rotate([0, 0]).invert([x, y]);
projection.rotate(
attitude()
.arc(p, q)
.compose(a)
.angles()
);
}

function dragended() {
d3.select(this).style("cursor", "grab");
}

return d3
.drag()
.on("start", dragstarted)
.on("drag", dragged)
.on("end", dragended);
}
Insert cell
function antipode(pole) {
return [pole[0] - 180, -pole[1]];
}
Insert cell
Insert cell
Insert cell
world = d3.json(
"https://unpkg.com/visionscarto-world-atlas@0.0.6/world/110m_land.geojson"
)
Insert cell
function show(attitude, options = {}) {
const m = 10;
const height = Math.min(318, width - 100),
context = DOM.context2d(width, height),
projection = d3
.geoOrthographic()
.fitExtent([[m, m], [height - m, height - m]], { type: "Sphere" })
.rotate(attitude.angles()),
path = d3.geoPath(projection, context);

function globe() {
context.fillStyle = "#777";
context.strokeStyle = "#000";

context.beginPath();
context.lineWidth = 0.25;
path(d3.geoGraticule10());
context.lineWidth = 0.5;
context.stroke();

context.beginPath();
path(world);
context.fill();

context.beginPath();
path({ type: "Sphere" });
context.lineWidth = 1;
context.stroke();
}

function render() {
context.save();
context.clearRect(0, 0, width, height);
globe();
if (options.axisAngle) draw_axis_angle(context, projection);

attitude.angles(projection.rotate());

const B = options.A ? attitude(A) : null;
if (B) {
context.beginPath();
path({ type: "MultiPoint", coordinates: [A, B] });
context.fillStyle = "blue";
context.fill();
}

context.fillStyle = "#000";
context.translate(height, 20);
if (options.euler) {
const r = projection.rotate();
context.fillText(`Euler Angles`, 0, 0);
context.fillText(`λ = ${+r[0].toFixed(2)}°`, 0, 20);
context.fillText(`φ = ${+r[1].toFixed(2)}°`, 0, 40);
context.fillText(`γ = ${+r[2].toFixed(2)}°`, 0, 60);
}

if (B) {
context.fillText(`A`, 0, 0);
context.fillText(`lon = ${+A[0].toFixed(2)}°`, 0, 20);
context.fillText(`lat = ${+A[1].toFixed(2)}°`, 0, 40);
context.fillText(`B`, 0, 70);
context.fillText(`lon = ${+B[0].toFixed(2)}°`, 0, 90);
context.fillText(`lat = ${+B[1].toFixed(2)}°`, 0, 110);
} else if (options.axisAngle) {
const axis = attitude.axis();
context.fillText(`Axis`, 0, 0);
context.fillText(`lon = ${+axis[0].toFixed(2)}°`, 0, 20);
context.fillText(`lat = ${+axis[1].toFixed(2)}°`, 0, 40);
context.fillText(`angle = ${+attitude.angle().toFixed(2)}°`, 0, 60);
}

if (options.matrix) {
const m = attitude.matrix();
context.fillText(`Matrix`, 0, 0);
for (let i = 0; i < 3; i++)
for (let j = 0; j < 3; j++) {
const a = +m[i][j].toFixed(5);
context.fillText(a, j * 65 - 3 * (a < 0), 20 + i * 20);
}
}

if (options.quaternion) {
const q = attitude.versor();
context.fillText(`Versor`, 0, 0);
for (let j = 0; j < 4; j++) {
const a = +q[j].toFixed(5);
context.fillText(a, j * 65 - 3 * (a < 0), 20);
}
}

context.restore();
}

if (options.drag)
d3.select(context.canvas)
.style("cursor", "grab")
.call(
drag(projection, options)
.on("drag.render", render)
.on("end.render", render)
);

return Object.assign(
d3
.select(context.canvas)
.call(render)
.node(),
{ projection, render }
);
}
Insert cell
function draw_axis_angle(context, projection) {
const a = attitude().angles(projection.rotate());
const path = d3.geoPath(projection, context);

context.save();

const axisPts = [a.axis(), antipode(a.axis())];

context.save();
context.globalCompositeOperation = "destination-over";
context.fillStyle = "red";
context.beginPath();
const p = projection(axisPts[0]);
context.moveTo(...p);
context.arc(...p, 2, 0, 2 * pi);
const q = projection(axisPts[1]);
context.moveTo(...q);
context.arc(...q, 2, 0, 2 * pi);
path({ type: "MultiPoint", coordinates: axisPts });
context.fill();

context.strokeStyle = "red";
context.beginPath();
let s = -.1;
context.moveTo((1 - s) * p[0] + s * q[0], (1 - s) * p[1] + s * q[1]);
context.lineTo(...p);
context.stroke();

context.beginPath();
context.moveTo(...p);
s = 1.;
context.lineTo((1 - s) * p[0] + s * q[0], (1 - s) * p[1] + s * q[1]);
context.setLineDash([2, 6]);
context.stroke();

context.restore();

const angle = a.angle();
if (angle) {
const k = 65; // parallel
const [a0, a1] = false ? [-angle, 0] : [0, angle];
const pts = [
...d3.range(a0, a1, Math.sign(angle)).map(a => [a, k]),
[a1, k],
[a1 - 2 * Math.sign(angle), k + 1.5],
[a1, k],
[a1 - 2.5 * Math.sign(angle), k - 1.5],
[a1, k]
];
//return pts;
const axis = a.axis();
context.beginPath();
path({
type: "LineString",
coordinates: pts.map(d3.geoRotation([-axis[0], 90 - axis[1]]).invert)
});
path({
type: "LineString",
coordinates: pts
.map(d => [-d[0], d[1]])
.map(d3.geoRotation([-axis[0], 90 - axis[1], 180]).invert)
});
context.lineWidth = 1;
context.strokeStyle = "red";
context.stroke();
}

context.restore();
}
Insert cell
pi = Math.PI
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more