Published
Edited
Aug 4, 2021
2 forks
7 stars
Chandrupatla’s root-finding methodSidi’s root-finding methodRegular numbersDruidJS workerNatural breaksDistance to a segmentRay out of a convex hullWord Tour: 40k words and their friendsHello, @thi.ng/grid-iteratorsHead/tail breaksPseudo-blue noise shaderHow fast does walk-on-spheres converge?AoC 12: shortest path under constraintsKDE estimationPlot: Correlation heatmapPoisson Finish 2Poisson disk sampling functionsWoS with transportSimple and surprising sortLocal medianTime series topological subsamplingUnion-FindLevel set experiment 1Mean value coordinatesPoisson potentialMiddle-squareWorld of squares (spherical)World of squaresLargest Inscribed Square
Hello, PyWavelets
Geothmetic meandianHello, Reorder.jsGeometric MedianImage FFTTransport to a mapDisc TransportTP3: Power Diagram and Semi-Discrete Optimal TransportThe blue waveHello, genetic-jsSliced Optimal TransportDruidJSSelf-Organizing Maps meet DelaunayHello, polygon-clippingseedrandom, minimalWalk on Spheres 2Walk on SpheresHello, AutoencoderKaprekar’s numberVoronoiMap2DHello, ccwt.jsPolygon TriangulationQuantile.invert?Linear congruential generatorHue blurNeedle in a haystackMoving average blurApollo 11 implementation of trigonometric functions, by Margaret H. Hamilton (march 1969)2D curves intersectionThe 2D approximate Newton-Raphson methodInverting Lee’s Tetrahedral projectionLinde–Buzo–Gray stipplingMean shift clustering with kd-tree2D point distributionsShortest pathKahan SummationHello, delatinDijkstra’s algorithm in gpu.jsLloyd’s relaxation on a graphManhattan DiameterManhattan VoronoiMobility landscapes — an introductionDijkstra’s shortest-path treeH3 odditiesProtein MatrixConvex Spectral WeightsSort stuff by similarityKrigingDelaunay.findTrianglen-dimensions binning?Travelling with a self-organizing mapUMAP-o-MaticMNIST & UMAP-jsHello UMAP-jsMean shift clusteringLevenshtein transitionRd quasi-random sequencesAutomated label placement (countries)Phyllotaxis explainedMotionrugsPlanar hull (Andrew’s monotone chain algorithm)South Africa’s medial axisTravelling salesperson approximation with t-SNEDistance to shoreWorkerngraph: pagerank, louvain…t-SNE VoronoiCloud ContoursCircular function drawingKruskal MazeMyceliumTravelling salesperson approximation on the globe, with t-SNEtsne.jstsne.js & worker
Also listed in…
Image
Hello
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
image = FileAttachment("camera.png").image()
Insert cell
coeffs = py`
# Wavelet transform of image
import numpy as np
import pywt
import pywt.data

pywt.dwt2(${pixels}, ${waveletType})
`
Insert cell
wvTypes = py`
import pywt
[pywt.wavelist(family) for family in pywt.families()]
`
Insert cell
display = (coeffs) => py`
########################################### patch matplotlib for Observable #######
## taken from "@gnestor/pyodide-demo"
from matplotlib import pyplot as plt
import types
import io
import base64
from js import document
def _show(self):
buf = io.BytesIO()
self.savefig(buf, format='png')
buf.seek(0)
img_str = 'data:image/png;base64,' + base64.b64encode(buf.read()).decode('UTF-8')
el = document.createElement('img')
el.src = img_str
return el
plt._show = types.MethodType(plt.show, plt)
plt.show = types.MethodType(_show, plt)
####################################################################################

LL, (LH, HL, HH) = ${coeffs}

# Plot approximation and details
titles = ['Approximation', ' Horizontal detail',
'Vertical detail', 'Diagonal detail']
fig = plt.figure(figsize=(12, 3))
for i, a in enumerate([LL, LH, HL, HH]):
ax = fig.add_subplot(1, 4, i + 1)
ax.imshow(a, interpolation="nearest", cmap=plt.cm.gray)
ax.set_title(titles[i], fontsize=10)
ax.set_xticks([])
ax.set_yticks([])

fig.tight_layout()

plt.show()
`
Insert cell
import { py, pyodide } from "@gnestor/pyodide"
Insert cell
pixels = {
const w = image.naturalWidth;
const h = image.naturalHeight;
const context = DOM.context2d(w, h, 1);
context.drawImage(image, 0, 0);
const { data } = context.getImageData(0, 0, w, h);
const pixels = [];
for (let y = 0; y < h; y++)
pixels.push(
Uint8Array.from({ length: w }, (_, x) =>
gray(data.slice(4 * (x + w * y), 4 * (x + w * y + 1)))
)
);

return pixels;
}
Insert cell
// Adobe Photoshop RGB (1998); proper grayscale conversion
function gray([r, g, b]) {
const gamma = 2.2;
return (
(r ** gamma * 0.2973 + g ** gamma * 0.6274 + b ** gamma * 0.0753) **
(1 / gamma)
);
}
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more