Published
Edited
May 18, 2022
3 stars
Chandrupatla’s root-finding methodSidi’s root-finding methodRegular numbersDruidJS workerNatural breaksDistance to a segmentRay out of a convex hullWord Tour: 40k words and their friendsHello, @thi.ng/grid-iteratorsHead/tail breaksPseudo-blue noise shaderHow fast does walk-on-spheres converge?AoC 12: shortest path under constraintsKDE estimationPlot: Correlation heatmapPoisson Finish 2Poisson disk sampling functions
WoS with transport
Simple and surprising sortLocal medianTime series topological subsamplingUnion-FindLevel set experiment 1Mean value coordinatesPoisson potentialMiddle-squareWorld of squares (spherical)World of squaresLargest Inscribed SquareHello, PyWaveletsGeothmetic meandianHello, Reorder.jsGeometric MedianImage FFTTransport to a mapDisc TransportTP3: Power Diagram and Semi-Discrete Optimal TransportThe blue waveHello, genetic-jsSliced Optimal TransportDruidJSSelf-Organizing Maps meet DelaunayHello, polygon-clippingseedrandom, minimalWalk on Spheres 2Walk on SpheresHello, AutoencoderKaprekar’s numberVoronoiMap2DHello, ccwt.jsPolygon TriangulationQuantile.invert?Linear congruential generatorHue blurNeedle in a haystackMoving average blurApollo 11 implementation of trigonometric functions, by Margaret H. Hamilton (march 1969)2D curves intersectionThe 2D approximate Newton-Raphson methodInverting Lee’s Tetrahedral projectionLinde–Buzo–Gray stipplingMean shift clustering with kd-tree2D point distributionsShortest pathKahan SummationHello, delatinDijkstra’s algorithm in gpu.jsLloyd’s relaxation on a graphManhattan DiameterManhattan VoronoiMobility landscapes — an introductionDijkstra’s shortest-path treeH3 odditiesProtein MatrixConvex Spectral WeightsSort stuff by similarityKrigingDelaunay.findTrianglen-dimensions binning?Travelling with a self-organizing mapUMAP-o-MaticMNIST & UMAP-jsHello UMAP-jsMean shift clusteringLevenshtein transitionRd quasi-random sequencesAutomated label placement (countries)Phyllotaxis explainedMotionrugsPlanar hull (Andrew’s monotone chain algorithm)South Africa’s medial axisTravelling salesperson approximation with t-SNEDistance to shoreWorkerngraph: pagerank, louvain…t-SNE VoronoiCloud ContoursCircular function drawingKruskal MazeMyceliumTravelling salesperson approximation on the globe, with t-SNEtsne.jstsne.js & worker
Insert cell
Insert cell
heatmap(V, { width: w, color: d3.interpolatePiYG })
Insert cell
Insert cell
Insert cell
V = {
const V = new Float64Array(w * w).fill(NaN);
const C = new Uint8Array(w * w); // counts

const a = strength / 100;
const ct = Math.cos(transport * radians);
const st = Math.sin(transport * radians);

for (let step = 0; step < 200; step++) {
yield V;

for (let n = 50000; n > 0; n--) {
let x = random();
let y = random();
const i =
Math.floor((0.5 + 0.49 * x) * w) + w * Math.floor((0.5 + 0.49 * y) * w);
if (C[i] > 50) continue; // precision (max: 254 or change C's type to Uint16)

for (let k = 0; k < 10; ++k) {
// determine the sphere centered on <x,y> and of radius r such that it touches the unit disc
const h = Math.hypot(x, y);
const r = 1 - h;

// if we're outside or close to the unit disc, stop
if (r < 0.001) break;

// evaluate the flow field by sampling it on a random point inside the sphere
{
const u = random_unit_vector();
const s = r * Math.sqrt(Math.random());
const sx = x + u[0] * s;
const sy = y + u[1] * s;

// the lines below don't really make sense. todo: think
const h = a / Math.hypot(sx, sy);
x += (sx * ct - sy * st) * h;
y += (sy * ct + sx * st) * h;
}

// random jump on the sphere (WoS step)
{
//const h = Math.hypot(x, y);
//const r = 1 - h;
const u = random_unit_vector();
x += r * u[0];
y += r * u[1];
}
}

// evaluate the function at the border we've reached
const c = Math.sin(3 * Math.atan2(y, x));
V[i] = (C[i] ? C[i] * V[i] + c : c) / ++C[i];
}
}
}
Insert cell
Insert cell
random = {
// this random generator allows to spend more effort in the center
const b = d3.randomBates(3);
return () => 3 * (b() - 0.5);
}
Insert cell
import { heatmap } from "@fil/heatmap"
Insert cell
import { radians } from "@fil/math"
Insert cell
// https://observablehq.com/d/12bcf9c57bb17f4d by @jrus
function random_unit_vector() {
const a = 2 * Math.random() - 1,
b = 1 - a * a,
t = a * (-0.0187108 * b + 0.31583526 + 1.27365776 / b),
// slightly more expensive variant with better uniformity:
// t = a * (((-0.000221184 * b + 0.0024971104) * b - 0.02301937096) * b
// + 0.3182994604 + 1.2732402998 / b),
q = 1 / (1 + t * t);
return [2 * t * q, (1 - t * t) * q];
}

Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more