Published
Edited
Mar 29, 2021
2 forks
30 stars
WebGPU ShaderHydraulic Erosion SimulationHow Does Mapbox Raster Colorization Work?Arc Length of a Quadratic Bézier SplineMagnetic PendulumTracing Lamb Modes in the Complex PlaneMissing Fundamental IllusionSliced Optimal TransportLine Integral ConvolutionShanks TransformationUeda's AttractorCubic basis vs. Hermite interpolationBicubic Texture Interpolation using Linear FilteringFactor-of-Two Lanczos Image ResamplingAperiodic Monotileeqn [WIP]SDF Points with reglKnocking Down the Gates with our Friend JacobiFast Generalized Winding Numbers in 2DHTML+CSS Periodic Three-Body OrbitsClifford and de Jong AttractorsStrange Attractors on the GPU, Part 1: ImplementationStrange Attractors on the GPU, Part 2: Fun!Lawson's Klein BottleInteractive Multi-scale Turing PatternsComputing π with the Bailey-Borwein-Plouffe FormulaThe Double Pendulum MapMalkus WaterwheelRegister Allocation and the k-Coloring ProblemMultiscale Turing Patterns in WebGLSelecting the Right Opacity for 2D Point CloudsKuramoto-Sivashinsky Equation in 2DAdaptive Contouring in Fragment ShadersComplex function plotterGPU Voronoi Diagrams using the Jump Flooding AlgorithmBaker's MapHello, g9Dispersion in Water Surface Waves
Fake Transparency for 3D Surfaces
Uniformly Distributed Points on a SphereGPU BoidsGrouping Points with Principal Component AnalysisDomain Coloring for Complex FunctionsDrawing indexed mesh data as screen-space normals without duplicating dataFinding Roots in the Complex PlanePeriodic Planar Three-Body Orbits2D (Non-physical) N-body Gravity with Poisson's EquationHalf-Precision Floating-Point, VisualizedIntegers in Single-Precision Floating-PointDomain Coloring with Adaptive ContouringInstanced WebGL CirclesDouble Compound Pendulums3D Reaction-DiffusionMathematical Easter Egg ColoringToiletpaperfullerenes and Charmin Nanotubes
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
{
camera.taint();
const meshProps = {
buffers,
opacity,
specular,
cartoonEdgeWidth,
cartoonEdgeOpacity,
gridWidth,
gridOpacity
};
const frame = regl.frame(() => {
camera(({ dirty }) => {
if (!dirty && !drawContinuously) return;
setUniforms(() => {
regl.clear({ color: [1, 1, 1, 1] });

// Draw the solid surface
if (~passes.indexOf('Solid surface pass')) {
drawMesh({ ...meshProps, solidPass: true });
}

// The second pass with only the wireframe and edges
if (~passes.indexOf('Fake transparency pass')) {
drawMesh({ ...meshProps, solidPass: false });
}
});
});
});
invalidation.then(() => frame.cancel());
}
Insert cell
createREGL = require('regl')
Insert cell
mesh = meshFromFunction((u, v) => [u, v], {
resolution: [151, 151],
uDomain: [0, 1.5],
vDomain: [-Math.PI, Math.PI],
uPeriodic: false,
vPeriodic: true
})
Insert cell
drawMesh = regl({
vert: `
precision highp float;
attribute vec2 uv;
uniform mat4 projection, view;
varying vec3 vPosition, vNormal;
varying vec2 vUV;
uniform float time;

// Our function!
vec3 f(vec2 uv) {
float r2 = dot(uv, uv);
float s = 12.0 * sqrt(r2);
float t = time * 4.0;
return vec3(
uv.x * 2.0,
cos(s - t) / sqrt(1.0 + s * s),
uv.y * 2.0
);
}

void main () {
vUV = uv.x * vec2(cos(uv.y), sin(uv.y));
vPosition = f(vUV);

// We differentiate the surface numerically to get the partial
// derivative wrt u and v, then take the cross product to get
// the surface normal.
float dx = 1e-2;
vec3 dpdu = f(vUV + vec2(dx, 0)) - vPosition;
vec3 dpdv = f(vUV + vec2(0, dx)) - vPosition;
vNormal = normalize(cross(dpdu, dpdv));

gl_Position = projection * view * vec4(vPosition, 1);
}
`,
frag: `
#extension GL_OES_standard_derivatives : enable
precision highp float;
varying vec3 vPosition, vNormal;
uniform vec3 eye;
uniform bool solidPass;
varying vec2 vUV;
uniform float pixelRatio, opacity, cartoonEdgeWidth, gridOpacity, specular, cartoonEdgeOpacity, gridWidth;

// This function implements a constant-width grid as a function of
// a two-dimensional input. This makes it possible to draw a grid
// which does not line up with the triangle edges.
// from: https://github.com/rreusser/glsl-solid-wireframe
float gridFactor (vec2 parameter, float width, float feather) {
float w1 = width - feather * 0.5;
vec2 d = fwidth(parameter);
vec2 looped = 0.5 - abs(mod(parameter, 1.0) - 0.5);
vec2 a2 = smoothstep(d * w1, d * (w1 + feather), looped);
return min(a2.x, a2.y);
}

void main () {
vec3 normal = normalize(vNormal);

// The dot product of the view direction and surface normal.
float vDotN = abs(dot(normal, normalize(vPosition - eye)));

// We divide vDotN by its gradient magnitude in screen space to
// give a function which goes roughly from 0 to 1 over a single
// pixel right at glancing angles. i.e. cartoon edges!
float cartoonEdge = smoothstep(0.75, 1.25, vDotN / fwidth(vDotN) / (cartoonEdgeWidth * pixelRatio));

// Combine the gridlines and cartoon edges
float grid = gridFactor(vUV * 10.0, 0.5 * gridWidth * pixelRatio, 0.5);
float combinedGrid = max(cartoonEdgeOpacity * (1.0 - cartoonEdge), gridOpacity * (1.0 - grid));

if (solidPass) {
// If the surface pass, we compute some shading
float shade = 0.2 + mix(1.2, specular * pow(vDotN, 3.0), 0.5);
vec3 colorFromNormal = (0.5 - (gl_FrontFacing ? 1.0 : -1.0) * 0.5 * normal);
vec3 baseColor = gl_FrontFacing ? vec3(0.1, 0.4, 0.8) : vec3(0.9, 0.2, 0.1);

vec3 color = shade * mix(
baseColor,
colorFromNormal,
0.4
);
// Apply the gridlines
color = mix(color, vec3(0), opacity * combinedGrid);
gl_FragColor = vec4(pow(color, vec3(0.454)), 1.0);
} else {
// If the wireframe pass, we just draw black lines with some alpha
gl_FragColor = vec4(
// To get the opacity to mix ~correctly, we use reverse-add blending mode
// so that white here shows up as black gridlines. This could be simplified
// by doing a bit more math to get the mixing right with just additive blending.
vec3(1),
(1.0 - opacity) * combinedGrid
);

if (gl_FragColor.a < 1e-3) discard;
}
}
`,
primitive: 'triangles',
uniforms: {
solidPass: regl.prop('solidPass'),
opacity: regl.prop('opacity'),
cartoonEdgeWidth: regl.prop('cartoonEdgeWidth'),
cartoonEdgeOpacity: regl.prop('cartoonEdgeOpacity'),
gridOpacity: regl.prop('gridOpacity'),
gridWidth: regl.prop('gridWidth'),
specular: regl.prop('specular')
},
attributes: {
uv: regl.prop('buffers.uv')
},
depth: {
enable: regl.prop('solidPass')
},
blend: {
enable: (ctx, props) => !props.solidPass,
func: {
srcRGB: 'src alpha',
srcAlpha: 1,
dstRGB: 1,
dstAlpha: 1
},
equation: {
rgb: 'reverse subtract',
alpha: 'add'
}
},
elements: regl.prop('buffers.elements')
})
Insert cell
setUniforms = regl({
uniforms: {
projection: regl.context('projection'),
view: regl.context('view'),
eye: regl.context('eye'),
pixelRatio: regl.context('pixelRatio'),
time: (ctx, context) => (drawContinuously ? ctx.time : 0)
}
})
Insert cell
buffers = {
const uv = regl.buffer(mesh.positions.flat());
const elements = regl.elements(mesh.cells.flat());
invalidation.then(() => {
uv.destroy();
elements.destroy();
});
return { uv, elements };
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more