Public
Edited
Mar 23
Paused
1 fork
12 stars
Andy's Walgreens COVID-19 Tracker Tracker
Belgium Vaccination Tracker - Progress of the vaccination campaignVaccination against covid-19 in France500,000 COVID-19 DeathsCovid-19 vaccinations: BubblesTime Spiral with a COVID DemoCOVID MasksGrid Cartogram component with live COVID demos (plus a MapEditor)The US COVID SyringeCOVID-19 DKCOVID-19 World Community Mobility Report by GoogleCOVID 19Chicago COVID ZIP SparklinesThe COVID Syringeభారతదేశంలో కోవిడ్-19SVG DataGrid with many features and a live COVID Dashboard demoThe spread of Covid-19 in New MexicoHeatmap of COVID-19 Confirmed Cases by Age over Time in JapanThe CoViD-19 ReportCovid19 WorldwideMassachusetts Coronavirus Cases by TownChoropleth map about Covid19 in FranceWell ordered coronavirus heatmaps for US and the WorldCOVID-19 Racial/Ethnic Mortality AnalysisProPublica's COVID Arrow MapClustering students to slow virus spread inside schoolsCOVID-19 in the USAWho Is Wearing Masks in the U.S.Covid-19 Viz RoundupCoronavirus StatsThe Covid-19 Crisis' Impact on the Number of US Flight PassengersCOVID-19 Daily New CasesCOVID-19 CasesCOVID–19 Bubble Chart with D3 RenderCoronavirus Deaths by Race / EthnicityHow many SARS-CoV-2 tests are we running in the U.S.?COVID-19 Onset vs. ConfirmationPeaks in confirmed daily deaths due to COVID-19 so farCOVID-19 in the U.S.Recreating John Burn-Murdoch’s Coronavirus trackerTracking COVID-19 Cases in VietnamCOVID-19 in NYC by Zip Code & IncomeVisualizing the Network Meta-Analysis of Covid-19 Studiesxkcd COVID-19 spread sketchCOVID-19's deaths in EuropeCovid-19 (corona virus) deaths per 1,000,000 peopleCOVID-19 Bubble map or spike map? (Twitter debate)A Timeline of Shelter-in-PlaceWhere’s that $2 trillion going?Estimating SARS-COV-2 infectionsCODAVIM - CountySARS-CoV-2 Epi CurveCOVID-19 Curves (U.S.)COVID-19 Cases by CountyCOVID-19 world growth rateA graphical experiment of exponential spreadCOVID-19 by US countyCOVID-19 Confirmed vs. New cases"Live" Logistic Coronavirus Death CounterInfografiche: COVID-19 in ItaliaCoronavirus (COVID-19) GlobeBar Chart Race, COVID-19 outbreak Worldwide to 24th March 2020US Coronavirus testing by statesUnited States Coronavirus Daily Cases Map (COVID-19)COVID-19 Numbers by State, Side by SideRecreating NYT U.S. Cases MapCOVID-19 in Washington stateCOVID-19 outbreak in maps and chartsCOVID-19 Spreading trendsRestaurants during COVID-19 social distancingCOVID-19 Countries Trajectories in 3DStates that aren't reporting aspects of their COVID-19 testing processNextstrain Prototyping - Issue 817Reviewing COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxivCoronavirus worldwide evolutionCovid-19 New Cases PunchcardCovid-19 cases per district in Germany.COVID-19 Cases, Deaths, and Recoveries (Select Country)Quarantine NowEmissions in WuhanCOVID-19(nCOV-2019) Outbreak in S.KoreaMovement of population between provinces in 2019-nCoVComparing COVID-19 GrowthCovid-19 derived chartCoronavirus Trends (COVID-19)Netherlands Coronavirus Daily Cases Map (COVID-19)Map and timeline of Corona outbreakSARS-CoV-2 Phylogenetic TreeCoronavirus data (covid-19)Visualizing the Logic of Exponential Viral SpreadItaly Coronavirus Daily Cases Map (COVID-19)COVID-19 Fatality Rate
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
variantsUS.slice(-20)
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
cdcWastewaterURL = "https://www.cdc.gov/wcms/vizdata/NCEZID_DIDRI/NWSSRegionalLevel.json"
Insert cell
Insert cell
cdcWasteWaterData
X
date
Y
wastewater
Color
region
Size
Facet X
Facet Y
Mark
line
Type Chart, then Shift-Enter. Ctrl-space for more options.

Insert cell
Plot.plot({
width,
color: { legend: true },
x: { grid: true },
y: { grid: true },
title: "COVID-19 Wastewater Viral Activity Level",
caption: "Source: https://www.cdc.gov/nwss/rv/COVID19-nationaltrend.html",
marks: [
Plot.lineY(cdcWasteWaterData.filter(d=>d.date_period==="All Results"), {
x: "date",
y: "wastewater",
stroke: "region",
tip: true
})
]
})
Insert cell
cdcWasteWaterDataRaw = d3.json(cdcWastewaterURL)
Insert cell
cdcWasteWaterData = cdcWasteWaterDataRaw.flatMap(d=>{
let date = new Date(d.Week_Ending_Date);
let date_period = d.Data_Collection_Period;
let keys = ["Midwest","National","Northeast","South","West",];
return keys.map(region=>({
date,
region,
date_period,
wastewater:Number(d[region+"_WVAL"]),
}));
}).filter(d=>d.date_period==="All Results")
Insert cell
allData.filter(d=>d.State === "Texas").slice(-10)

Insert cell
Insert cell
checkForNewColumns()
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
lastTimestamp = allData.slice().reverse().find(d=>d.State === "Florida" && (d["test_number_pos"])).Date


Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
lastDate = new Date(lastTimestamp)
Insert cell
Insert cell
Insert cell
//stateData = d3.csv("https://grep.lvab.workers.dev/?h=1&u=https://labvegas.com/data/covid19/walgreens/dashboard-Tracker_Aggregation.csv&s="+(stateSelected ? "^" + stateSelected : ""), d3.autoType)
Insert cell
stateData.slice(-10)
Insert cell
Insert cell
Insert cell
stateDataTotals = getStateDataTotals(stateData)
Insert cell
stateDataTotals.slice(-20)
Insert cell
viewof stateDataTable = Inputs.table(stateDataTotals)
Insert cell
Insert cell
allDataTotals = getStateDataTotals(allData)
Insert cell
Insert cell
Insert cell
lastVariantDate = Math.min(lastTimestamp, allBA4.reduce((o,r)=>{o = Math.max(o,r.Date); return o},0))
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
tests.slice(-20)
Insert cell
multiStatesSelected = regionSelected !== "0" ? regionToStates[regionSelected] : false
Insert cell
variants = getVariantsMult(allBA4.filter(r => multiStatesSelected ? multiStatesSelected[r.State] : r.State === stateSelected))
Insert cell
variants.slice(-20)
Insert cell
//plotVariants(variantsAllStates.filter(d=>d.Date>new Date(2022, 2, 22)),"Cases scaled",[new Date(2022, 2, 22), Date.now()])
Insert cell
getVariants = function(data, keys = ["Other","BA.1","BA.2","BA.4+BA.5"] ) {
//const keys = ["Other","BA.1","BA.2","BA.4+BA.5","BA.1+BA.4+BA.5"];
//const keys = ["Other","BA.1+BA.4+BA.5","BA.2"];
let byStateDate = {};
let v = data.flatMap((r,i) => {
let a = [];
let peak = variantPeaks[r.State]["BA.4+BA.5 Cases"];
keys.forEach(k => {
let p = r[k + " Proportion"];
let p7 = r[k + " Proportion 7day"];
let p9 = r[k + " Proportion 9day"];
let cases = casesByDateAndState[r.State][r.Date];

let logRatio = Math.log2(p)-Math.log2(1-p);
let d = {
Date:r.Date,
State:r.State,
Variants: k,
Samples: r[k],
Samples3day: r[k +" 3day"],
Samples7day: r[k +" 7day"],
Samples9day: r[k +" 9day"],
Proportion: p,
Proportion7day: p7,
Proportion9day: p9,
LogRatio: logRatio,
Cases: r[k + " Cases"],
"Cases scaled": r[k + " Cases"]/peak,
Days: r.Days,
};
a.push(d);
byStateDate[k] = byStateDate[k] || {};
byStateDate[k][r.State] = byStateDate[k][r.State] || {};
byStateDate[k][r.State][r.Date] = d;
let period = 7;
let lastWeek = byStateDate[k][r.State][r.Date - period*24*60*60*1000];
if (lastWeek && p && p < 1) {
let lastP = lastWeek.Proportion;
if (lastP && lastP < 1){
let relativeGrowth = Math.pow(p/(1-p) / (lastP/(1-lastP)),1/period) - 1;
d.RelativeGrowth = relativeGrowth;
}
let twoWeeksAgo = byStateDate[k][r.State][r.Date - 2*period*24*60*60*1000];
if (twoWeeksAgo) {
let lastP2 = twoWeeksAgo.Proportion;
if (lastP2 && lastP2 < 1){
let relativeGrowth2weeks = Math.pow(p/(1-p) / (lastP2/(1-lastP2)),1/2/period) - 1;
d.RelativeGrowth2weeks = relativeGrowth2weeks;
let relativeGrowth2 = Math.pow(lastP/(1-lastP) / (lastP2/(1-lastP2)),1/period) - 1;
d.RelativeGrowthChange = (d.RelativeGrowth - relativeGrowth2)/period;
}
}

}
});
a.push({
Date:r.Date,
State:r.State,
Variants: "All",
Cases: r.Positives,
});
return a;
});
return v;
}
Insert cell
testBA4filtered = allBA4.filter(d=>testStates[d.State])
Insert cell
testVariants = getVariantsMult(testBA4filtered)

Insert cell
testVariants.slice(-20)
Insert cell
testDataTotals.slice(-5)[0]
Insert cell
testDataTotals = getStateDataTotals(testBA4filtered)
Insert cell
testStates = ({California:0,Texas:1,Utah:0,"North Carolina":0,Alaska:1,})
Insert cell
Select a data source…
Type Chart, then Shift-Enter. Ctrl-space for more options.

Insert cell
stateTable("Test",testAllDataTotals,testVariants)
Insert cell
testAllData.slice(-20)
Insert cell
testAllData = allData.filter(d=>testStates[d.State])
Insert cell
{
let o = testAllDataTotals.slice(-1)[0];
let o2 = {};
let keys = ["State","3day_mvPreOmiBA2_nmrtr","3day_mvPreOmiBA11_nmrtr"];
keys.forEach(k=>o2[k] = o[k]);
return o2;
}
Insert cell
testAllDataTotals = getStateDataTotals(testAllData)
Insert cell
getVariantsMult = function(data) {
let a = [];
let m = {};
data.forEach((r,i) => {
const keys = ["Other","BA.1","BA.2","BA.4+BA.5"];
//const keys = ["BA.4+BA.5","BA.1","BA.2","Other"];
//const keys = ["BA.1+BA.4+BA.5","BA.2","Other"];
let peak = variantPeaks[r.State]["BA.1 Cases"];

keys.forEach(k => {
let p = r[k + " Proportion"];
let cases = casesByDateAndState[r.State][r.Date];
if (!m[r.Date]) {
m[r.Date] = {
};
}

if (!m[r.Date][k]) {
m[r.Date][k] = {
Date:r.Date,
State:r.State,
Variants: k,
Samples: r[k] || 0,
TotalSamples: p ? Math.round(r[k]/p) : 0,
Samples3day: r[k +" 3day"] || 0,
Samples9day: r[k +" 9day"] || 0,
Samples7day: r[k +" 7day"] || 0,
Samples1day: r[k +" 1day"] || 0,
Proportion: p,
Cases: r[k + " Cases"] || 0,
"Cases scaled": (r[k + " Cases"]||0)/peak,
Days: r.Days,
StateCount: 1,
}
}
else {
let o = m[r.Date][k];
o.State += ", " + r.State;
o.Samples += r[k] || 0;
o.TotalSamples += p ? Math.round(r[k]/p) : 0;
o.Samples3day += r[k +" 3day"] || 0;
o.Samples7day += r[k +" 7day"] || 0;
o.Samples9day += r[k +" 9day"] || 0;
o.Samples1day += r[k +" 1day"] || 0;
o.Proportion = o.Samples/o.TotalSamples;
o.Cases += r[k + " Cases"] || 0;
o["Cases scaled"] = o.Cases/peak;
o.Days += r.Days;
o.StateCount++;
}
if (r.Date == 1687305600000-5*1000*24*60*60) {
//console.log("debug ",m[r.Date][k],r);
}
});
if (r.Date < firstPlotDate) {
return ;
}
if (!m[r.Date].All) {
m[r.Date].All = {
Date:r.Date,
State:r.State,
Variants: "All",
Cases: r.Positives
}
}
else {
m[r.Date].All.Cases += r.Positives;
}
let keysToTotal = {
"Samples":"",
"Samples1day":" 1day",
"Samples3day":" 3day",
"Samples7day":" 7day",
"Samples9day":" 9day",
};
keys.forEach(k => {
Object.entries(keysToTotal).forEach( entry => {
let ko = entry[0];
let ki = entry[1];
m[r.Date].All[ko] = (m[r.Date].All[ko] || 0) + (r[k + ki]||0);
});
});
if (r.State == "Alaska" && r.Date == lastDate-1*1000*24*60*60) {
//debugger;
}
});
Object.values(m).forEach(mm => {
Object.values(mm).forEach(r => {
a.push(r);
});
});
console.log("getVariantsMult returning",a);
return a;
}
Insert cell
Insert cell
Insert cell
totalPositive = d3.sum(allBA4, d=>d.Positives)/7
Insert cell
Insert cell
Insert cell
transitionsBA2toBA4 = getTransitions("BA.2","BA.4+BA.5")
Insert cell
Insert cell
function timeStampToDateString(d) {
return (new Date(d)).toGMTString().slice(0,16);
}
Insert cell
lastVariantDate
Insert cell
lastTimestamp
Insert cell
currentBA4 = allBA4.filter(d => Math.abs(parseInt(d.Date) - (lastVariantDate - 1000*60*60*24*(numberOfDays-mapDay))) < 1000*60*60*1).map(d => ({...d,Date: timeStampToDateString(d.Date)}))
Insert cell
Insert cell
Insert cell
Insert cell
function stateTable(stateName,dataTotals,variantsData) {
let lastDay = mapDay - numberOfDays - 1;
let lagDays = 1;

let kr = "7day_mov_avg";
let kpos = "test_number_pos_rolling";
let kall = "test_number_ALL_rolling";

let empty = {
[kr]:0,
[kpos]:0,
[kall]:0,
};
let current = dataTotals.slice(lastDay-lagDays)[0];
let prior = dataTotals.slice(lastDay-7-lagDays)[0];
console.log(current);
let prior2 = dataTotals.slice(lastDay-14-lagDays)[0];
console.log(kr,{current:current[kr], prior:prior[kr]});
console.log(kpos,{current:current[kpos], prior:prior[kpos]});
console.log(kall,{current:current[kall], prior:prior[kall]});

let currentRate = current[kpos] / current[kall] ;
let priorRate = prior[kpos] / prior[kall] ;
let prior2Rate = prior2[kpos] / prior2[kall] ;

console.log({lastDay, mapDay, numberOfDays});
let ba45 = variantsData.filter(d=>d.Variants=="BA.4+BA.5");
let ba2 = variantsData.filter(d=>d.Variants=="BA.2");
console.log("ba45",ba45);
console.log("ba2",ba2);

let ba45_last_n_days = ba45.slice(-14-lagDays);
let ba2_last_n_days = ba2.slice(-14-lagDays);

let sgtf_samples9_last_week = ba45_last_n_days[0].Samples3day + ba45_last_n_days[3].Samples3day + ba45_last_n_days[6].Samples3day;
let sgtf_samples9 = ba45_last_n_days[7].Samples3day + ba45_last_n_days[10].Samples3day + ba45_last_n_days[13].Samples3day;
let non_sgtf_samples9_last_week = ba2_last_n_days[0].Samples3day + ba2_last_n_days[3].Samples3day + ba2_last_n_days[6].Samples3day;
let non_sgtf_samples9 = ba2_last_n_days[7].Samples3day + ba2_last_n_days[10].Samples3day + ba2_last_n_days[13].Samples3day;

console.log({lastDay,mapDay,ba45length:ba45.length, sgtf_samples9, sgtf_samples9_last_week, non_sgtf_samples9, non_sgtf_samples9_last_week});
let currentBA45 = ba45.slice(lastDay)[0].Proportion;
let currentBA45lag = ba45.slice(lastDay-lagDays)[0].Proportion;
let currentBA45p = (currentBA45*100).toFixed(1)+"%";
let currentBA45Cases = (current[kpos]* currentBA45lag).toFixed(0);
let currentBA2Cases = current[kpos] - currentBA45Cases;

let priorBA45 = ba45.slice(lastDay-7)[0].Proportion;
console.log("priorBA45",priorBA45);
let priorBA45lag = ba45.slice(lastDay-7-lagDays)[0].Proportion;
let priorBA45p = (priorBA45lag*100).toFixed(1)+"%";
let priorBA45Cases = (prior[kpos]* priorBA45lag).toFixed(0);
let priorBA2Cases = prior[kpos] - priorBA45Cases;

let prior2BA45 = ba45.slice(lastDay-14)[0].Proportion;
let prior2BA45lag = ba45.slice(lastDay-14-lagDays)[0].Proportion;
let prior2BA45p = (prior2BA45lag*100).toFixed(1)+"%";
let prior2BA45Cases = (prior2[kpos]* prior2BA45lag).toFixed(0);
let prior2BA2Cases = prior2[kpos] - prior2BA45Cases;

function toPercent(x,d=1) {
return (x * 100).toFixed(d);
}
return md`| ${stateName} Walgreens | Positivity Rate | Positive Tests | Total Tests | SGTF % | SGTF Pos Tests, 9 days | non-SGTF Pos Tests, 9 days
| ------ | -------- | ---------- | -------
| Current week | ${toPercent(currentRate)}% | ${current[kpos].toLocaleString()} | ${current[kall].toLocaleString()} | ${currentBA45p} | ${sgtf_samples9.toLocaleString()} | ${non_sgtf_samples9.toLocaleString()}
| Prior week | ${toPercent(priorRate)}% | ${prior[kpos].toLocaleString()} | ${prior[kall].toLocaleString()} | ${priorBA45p} | ${priorBA45Cases.toLocaleString()} | ${priorBA2Cases.toLocaleString()}
| 2 weeks prior | ${toPercent(prior2Rate)}% | ${prior2[kpos].toLocaleString()} | ${prior2[kall].toLocaleString()} | ${prior2BA45p} | ${prior2BA45Cases.toLocaleString()} | ${prior2BA2Cases.toLocaleString()}
| *1-week Change* | *${toPercent(currentRate-priorRate)}%* | *${toPercent((current[kpos]-prior[kpos])/prior[kpos])}%* | *${toPercent((current[kall]-prior[kall])/prior[kall])}%* | *${toPercent(currentBA45lag-priorBA45lag)}%* | *${toPercent((currentBA45Cases-priorBA45Cases)/priorBA45Cases)}%* | *${toPercent((currentBA2Cases-priorBA2Cases)/priorBA2Cases)}%*
| *2-week Change* | *${toPercent(currentRate-prior2Rate)}%* | *${toPercent((current[kpos]-prior2[kpos])/prior2[kpos])}%* | *${toPercent((current[kall]-prior2[kall])/prior2[kall])}%* | *${toPercent(currentBA45lag-prior2BA45lag)}%* | *${toPercent((currentBA45Cases-prior2BA45Cases)/prior2BA45Cases)}%* | *${toPercent((currentBA2Cases-prior2BA2Cases)/prior2BA2Cases)}%*

<span style="font-size: 0.8em">"Est. SGTF (or non-SGTF) Pos Tests" is the product of the 7-day rolling positive tests times the estimate of the proportion of SGTF (or non-SGTF) cases, ${lagDays} days back (to reduce the effect of reporting lag).</span>
`;
}
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
Insert cell
testsUS.slice(0,10)
Insert cell
function plotTestsPositivity(datain,domain,showAllTests = true, regionSelected="") {
domain = domain || [new Date(2021, 4, 0), Date.now()];
let data = {
tests: datain.tests.sort((a,b)=>a.Date - b.Date).filter(d=>d.Date >= domain[0] && d.Date <= domain[1] && (d.Tests !== "All Tests" || showAllTests)),
positivity: datain.positivity.sort((a,b)=>a.Date - b.Date).filter(d=>d.Date >= domain[0] && d.Date <= domain[1] ),
};

let wastewaterPlot = null;
let wastewaterLabel = null;
console.log("regionSelected",regionSelected);
let wastewaterRegion = regionSelected;
console.log("wastewaterRegion",wastewaterRegion);
if (wastewaterRegion) {
let regionWastewaterData = cdcWasteWaterData.filter(d=>d.date >= domain[0] && d.date <= domain[1] && d.region === wastewaterRegion && d.date_period === "All Results");
console.log("regionWastewaterData",regionWastewaterData);
if (regionWastewaterData.length) {
let recentWastewaterMean = d3.mean(regionWastewaterData.slice(-14,-1),d=>d.wastewater);
let lastWastewaterDate = regionWastewaterData.slice(-2)[0].date.valueOf();
let recentTests = data.tests.filter(d=>d.Tests === "Positive Tests" && d.Date <= lastWastewaterDate && d.Date > lastWastewaterDate-13*7*24*60*60*1000);
//console.log("recentTests",recentTests);
let recentPositivesMean = d3.mean(recentTests,d=>d.WeeklyTests);
//console.log(lastWastewaterDate);
//console.log("recentWastewaterMean",recentWastewaterMean);
//console.log("recentPositivesMean",recentPositivesMean);
let wastewaterScale = recentPositivesMean / recentWastewaterMean;
wastewaterScale = 1;
wastewaterPlot = Plot.lineY(regionWastewaterData, {
x: d=>d.date.valueOf(),
y: d=>d.wastewater * wastewaterScale,
stroke: d=>"Wastewater",
tip: true
});
wastewaterLabel = Plot.text(regionWastewaterData, Plot.selectLast({
x: d=>d.date.valueOf(),
y: d=>d.wastewater * wastewaterScale,
fill: d=>"Wastewater",
text: ()=>"CDC Wastewater " + wastewaterRegion,
textAnchor: "end",
fontSize: chartFontSize,
dx: -5,
dy: -5
}));
//console.log("wastewaterPlot",wastewaterPlot);
}
}
let maxY = d3.max(data.tests,d=>d.WeeklyTests);
let positiveTests = data.tests.filter(d=>d.Tests==="Positive Tests");
let maxPos = d3.max(data.tests.filter(d=>d.Tests==="Positive Tests"),d=>d.WeeklyTests);
let posScale = maxY/maxPos;
let positiveTestsScaled = positiveTests.map(d=> {
return {
...d,
Tests: "Positives scaled",
WeeklyTests: d.WeeklyTests*posScale,
};
});

//data.tests = data.tests.concat(positiveTestsScaled);

let dayMS = 24*60*60*1000 ;
let daysShaded = [-7,0].map(d=>{
return {
Date: lastTimestamp + d*dayMS,
WeeklyTests: maxY,
};
});

let domainDays = (domain[1].valueOf() - domain[0].valueOf())/dayMS;
console.log("domainDays is ",domainDays);
let yearLine = null;
if (domainDays > 372) {
console.log("Going to put a 1-year-ago line, domainDays is ",domainDays);
yearLine = [
Plot.ruleX([{date:new Date(domain[1].valueOf()-365*dayMS)}],{x:d=>d.date.valueOf(),y1:d=>0,y2:d=>maxY, stroke:"#888",opacity:0.9}),
Plot.text([{date:new Date(domain[1].valueOf()-365*dayMS)}],{x:d=>d.date.valueOf(),y:d=>0, text:d=>"One year ago", opacity:0.9, textAnchor:"start",lineAnchor:"bottom", fill:d=>"#888", dx: 5, fontSize: width/75}),

];
}
console.log("year line",yearLine);

let plot = multiLayerX(
{
...chartConfig,
style: "overflow: visible;",
x: {
type: "utc",
domain: domain,
grid: true,
tickRotate: -30
},
y: {
axis: "left",
types: [null,"%"],
grid: true,
zero: true,
label: "Weekly Tests"
},
},
Plot.line(data.tests,{
y: "WeeklyTests",
x: "Date",
stroke:d=>d.Tests === "Positive Tests" ? "#E6B442" : "#4865C2",
tip: true,
}),
Plot.line(data.positivity,{
y: "Positivity",
x: "Date",
stroke:"#cccccc",
tip: true,
}),
Plot.areaY(daysShaded, {
y: "WeeklyTests",
x: "Date",
fill: "#ccc",
opacity: 0.5,
}),
Plot.text(data.tests, Plot.selectMaxY({
x: d => d.Tests === "All Tests" ? d.Date : d.Date,
y: d => d.Tests === "All Tests" ? d.WeeklyTests : d.WeeklyTests/6,
fill:d=>d.Tests === "Positive Tests" ? "#E6B442" : "#4865C2",
text: "Tests",
textAnchor: "end",
fontSize: chartFontSize,
dy: 0,
dx: -10
})),
Plot.text(data.positivity, Plot.selectLast({
x: "Date",
y: "Positivity",
fill: "#888888",
text: ()=>"Positivity",
textAnchor: "end",
fontSize: chartFontSize,
dx: -20,
dy: -5
})),
yearLine,
wastewaterPlot,
wastewaterLabel,
);
plot.setAttribute("font-size",chartFontSize);
return scaleToFit(plot);
}

Insert cell
Insert cell
Insert cell
Insert cell
scaleToFit = function(el,aspectRatio = 1.2) {
let w = Math.min(width*0.9,window.outerHeight*aspectRatio);
return html`<div style="margin:auto; width:${w/width*100}%;">${el}</div>`
}
Insert cell
chartFontSize = Math.min(chartConfig.width/35,12);

Insert cell
firstPlotDate = new Date(2021, 10, 22);
Insert cell
d3.schemeTableau10
Insert cell
variantDescription = ({
"Cases":"Estimated positive tests, last 7 days",
"Samples3day":"Samples detected last 3 days",
"Samples7day":"Samples detected last 7 days",
"Samples1day":"Samples detected last day"
})
Insert cell
Insert cell
plotVariantFacets = function(datain,variant="BA.2",column = "Samples3day", domain = [Date.now()-61*24*60*60*1000, Date.now()],aspectRatio = 4, ydomain=false) {

let curve = {Samples1day:1,Samples3day:1,Samples7day:1}[column] ? "step" : "linear";

//let y = d=>d[column]/statePopulation[d.State]*1000000;

let data = datain.filter(d=>d.Date >= domain[0] && d.Variants === variant);

let maxByState = {};
let minByState = {};
let recentMaxByState = {};
let recentMaxByStateNormalized = {};
let recentAvgByState = {};
let recentAvgByStateNormalized = {};
let recentMaxDivMinByState = {};
let dayMS = 24*60*60*1000 ;

let recentDate = lastTimestamp-6*dayMS ;
statesList.forEach(state => {
maxByState[state] = d3.max(data,d=>d.State === state ? d[column] : 0);
minByState[state] = d3.min(data,d=>d.State === state && d[column] ? d[column] : 9999999);
recentMaxByState[state] = d3.max(data,d=>d.State === state && d.Date > recentDate ? d[column] : 0);
recentAvgByState[state] = d3.sum(data,d=>d.State === state && d.Date > recentDate ? d[column] : 0);
recentMaxByStateNormalized[state] = recentMaxByState[state]/maxByState[state] ;
recentMaxDivMinByState[state] = recentMaxByState[state]/minByState[state] ;
recentAvgByStateNormalized[state] = recentAvgByState[state]/maxByState[state] ;
});
let y = d=>d[column]/maxByState[d.State];
//data = data.filter(d=>maxByState[d.State]>5);
data = data.filter(d=>minByState[d.State]>1);
let items = Object.entries(recentMaxDivMinByState);
items.sort((a,b)=>(recentMaxByStateNormalized[b[0]] - recentMaxByStateNormalized[a[0]])*50 + b[1]-a[1]);
let stateSort = {};
items.forEach((item,i)=>stateSort[item[0]] = i);
console.log("sorted states",items);
//data.sort((a,b)=>recentAvgByStateNormalized[a.State] - recentAvgByStateNormalized[b.State])
ydomain = [0,1.1];

console.log(maxByState);
let daysShaded = [-7,0].map(d=>{
return {
Date: lastTimestamp+d*dayMS,
[column]: 1,
};
});
let plot = Plot.plot({
style: "overflow: visible;",
...chartConfig,
height: 3000,
x: {
type: "utc",
domain,
axis: "top",
grid: true,
},
y: {
grid: true,
domain: ydomain,
nice: true,
//label: column
},
opacity: {
type: "linear",
domain: [0,1],
},
strokeOpacity: {
type: "linear",
domain: [0,1],
range: [0,1],
},
fillOpacity: {
type: "linear",
domain: [0,1],
range: [0,1],
},
r: {
type: "linear",
domain: [0,1],
},
color: {
//type: "categorical",
//reverse:false,
//range: colorRange
},
facet: {
data: data,
y: "State",
//x: d=>d.State.length % 2,
size: chartFontSize * 1.5,
marginRight: 90
},
marks: [
Plot.areaY(daysShaded, {
y: d=>d[column],
x: "Date",
fill: "#ccc",
opacity: 0.5,
}),
Plot.line(data,{
y,
x: "Date",
curve,
z: d=>-stateSort[d.State],
stroke: y,
sort: {
fy: {value: "z", reverse: true}
},
}),
/*
Plot.line(data,{ // all lines as background on all facets
y,
x: "Date",
curve,
opacity: d=>0.05,
stroke: y,
facet: "exclude",
z: d=>recentAvgByStateNormalized[d.State],
sort: {
fy: {value: "z", reverse: true}
},
}),*/
]
});
plot.setAttribute("font-size",chartFontSize*1);
return scaleToFit(plot,aspectRatio);}

Insert cell
Insert cell
Insert cell
Insert cell
variantsUS.slice(-50)
Insert cell
Insert cell
variantsUS.slice(-10)
Insert cell
Insert cell
Insert cell
mapByRegion = 0

Insert cell
Insert cell
mapChart = {
let domain = [0,1];
let data = currentBA4growth;

let type = "diverging";
let pivot = 0.5;
let thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9];

if ({"BA.4+BA.5 peak to BA.2 peak":1,"BA.4+BA.5 peak to BA.1 peak":1}[mapMode]) {
data = Object.values(variantPeaks);
}

if (mapByRegion) {
let regionData = [];
}

let values = {
Proportion: d => d["BA.2 Proportion"],
"3day": d => {
let tot = d["BA.1+BA.4+BA.5 3day"] + d["BA.2 3day"] + d["Other 3day"];
return (tot < 2) ? null : d["BA.2 3day"]/tot ;
},
"9day": d => {
let tot = d["BA.1+BA.4+BA.5 9day"] + d["BA.2 9day"] + d["Other 9day"];
return (tot < 2) ? null : d["BA.2 9day"]/tot ;
},
"BA.2 Growth": d => {
let tot = d["BA.2 3day"];
return (tot < 6) ? null : d["BA.2 Growth"];
},
"BA.4+BA.5 Growth": d => {
let tot = d["BA.1+BA.4+BA.5 3day"];
return (tot < 6) ? null : d["BA.4+BA.5 Growth"];
},
// Change was calculated for BA1/4/5
Change: d =>-d.Change,
growthAdvantage: d=>(1+d["BA.2 Growth"])/(1+d["BA.4+BA.5 Growth"]) - 1,
}

let value = values[mapMode] || (d => d[mapMode]);
let maxValue = d3.max(data.map(d=>value(d) < 1 ? value(d) : null));
console.log("maxValue",maxValue, data.map(d=>value(d) < 1 ? value(d) : null));
let minValue = d3.min(data.map(d=>value(d) < 1 ? value(d) : null));

let stateLabel = null ;

if (mapMode === "Proportion" || mapMode === "3day" || mapMode === "9day") {
//let m = Math.ceil(mValue*10)/10 ;
//thresholds = thresholds.map(x => (x*m).toFixed(2));
thresholds = thresholds.map(v=>0.5+0.5*v);
}
if (mapMode === "3day") {
stateLabel = (f, d) => {
//console.log({f,d});
return d ? `${d.State}
${(value(d)*100).toFixed(2)}%
${d["BA.2 3day"]}/${d["BA.1+BA.4+BA.5 3day"]+d["BA.2 3day"]+d["Other 3day"]}` : f.properties.name;
}
}
if (mapMode === "9day") {
stateLabel = (f, d) => {
//console.log({f,d});
return d ? `${d.State}
${(value(d)*100).toFixed(2)}%
${d["BA.2 9day"]}/${d["BA.1+BA.4+BA.5 9day"]+d["BA.2 9day"]+d["Other 9day"]}` : f.properties.name;
}
}
if (mapMode === "Change") {
thresholds = thresholds.map(x => ((x-0.5)/2).toFixed(2));
}
else if ({"BA.4+BA.5 peak to BA.2 peak":1,"BA.4+BA.5 peak to BA.1 peak":0}[mapMode]) {
thresholds = [ 0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2];
}
else if (mapMode === "Growth" || mapMode === "Growth2" ) {
thresholds = thresholds.map(x => (x > 0.5 ? 2 : 1)*(x/0.5-1).toFixed(1));
}
else if (mapMode === "BA.4+BA.5 Growth") {
// thresholds = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9];
thresholds = [-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1];
}
else if (mapMode === "BA.2 Growth") {
thresholds = [-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1];
}
else if (mapMode === "Positivity") {
thresholds = thresholds.map(x => (0.05 + x/2).toFixed(2));
}
else if (mapMode === "PositivityChange") {
thresholds = [-0.08,-0.06,-0.04,-0.02,0.0,0.02,0.04,0.06,0.08,.1];
}
else if (mapMode === "Positives Growth") {
//thresholds = [-0.16,-0.12,-0.08,-0.04,0.0,0.04,0.08,0.12,0.16,.2];
thresholds = [-0.5,-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3,0.4,.5];
}
else if (mapMode === "growthAdvantage") {
thresholds = [-0.8,-0.6,-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1];
thresholds = [-0.8,-0.6,-0.4,-0.2,0.0,0.25,0.5,1,1.5,2];
}
//let colorSchemeName = "scheme"+colorSchemeID.charAt(0).toUpperCase() + colorSchemeID.slice(1);
let colorScheme;
if (colorSchemeID === "schemeCustom") {
colorScheme = [...myScheme];
}
else {
colorScheme = [...(d3[colorSchemeID][10] || d3[colorSchemeID][9] || d3[colorSchemeID][0])] ;
}
if (!reverseMapColors) {
colorScheme.reverse();
}

let map = Choropleth(
data, {
id: d => namemap.get(d.State),
value,
scale: d3.scaleThreshold,
domain: thresholds,
range: colorScheme,
strokeWidth: d=>(d && d["BA.2 3day"] || 0)*10+1, // stroke color for borders
stroke: "#ffffff", // stroke color for borders
fill: "#dddddd", // fill color for outline
title: stateLabel || ((f, d) => {
//console.log({f,d});
return d ? `${d.State}\n${(value(d)*100).toFixed(2)}%` : f.properties.name;
}),
features: states,
borders: statemesh,
width: 1000,
height: 620,
});

function scrollToSelectedState() {
document.getElementById("charts-for-selected-state-puerto-rico-or-dc").scrollIntoView();
}
window.scrollToSelectedState = scrollToSelectedState;

function handleClick(e) {
console.log("Map clicked:",e);
//console.log("Source element:",e.srcElement);
let stateClicked = e.srcElement.textContent.split("\n")[0];
console.log("State clicked: ", stateClicked);
(viewof stateSelected).value = stateClicked;
(viewof stateSelected).dispatchEvent(new Event("input", {bubbles: true}));
scrollToSelectedState();
}
console.log({map});
map.addEventListener("click", handleClick);


return map;
}
Insert cell
Insert cell
mapDaySlider = Inputs.range(
[1, numberOfDays-1],
{
step: 1,
width: width*0.9,
value: numberOfDays
}
)
Insert cell
animationDay = animateSlider(animateButton, mapDaySlider)
Insert cell
Insert cell
viewof animateButton = Inputs.button("Animate")
Insert cell
viewof colorSchemeID = Inputs.select(["schemeCustom",...Object.keys(d3).filter(k => k.startsWith("scheme") && (d3[k][10] || d3[k][9]) && !d3[k][0])], {label: "Color scheme", value: "schemeSpectral", format: k => k.slice(6), width: 90})
Insert cell
viewof reverseMapColors = Inputs.toggle({label: "Reverse Colors", value: false})
Insert cell
Insert cell

One platform to build and deploy the best data apps

Experiment and prototype by building visualizations in live JavaScript notebooks. Collaborate with your team and decide which concepts to build out.
Use Observable Framework to build data apps locally. Use data loaders to build in any language or library, including Python, SQL, and R.
Seamlessly deploy to Observable. Test before you ship, use automatic deploy-on-commit, and ensure your projects are always up-to-date.
Learn more